Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Glob Health ; 11(11): e1743-e1752, 2023 11.
Article in English | MEDLINE | ID: mdl-37858585

ABSTRACT

BACKGROUND: This study assessed the safety and immunogenicity of the Ad26.ZEBOV and MVA-BN-Filo Ebola virus (EBOV) vaccine regimen in infants aged 4-11 months in Guinea and Sierra Leone. METHODS: In this phase 2, randomised, double-blind, active-controlled trial, we randomly assigned healthy infants (1:1 in a sentinel cohort, 5:2 for the remaining infants via an interactive web response system) to receive Ad26.ZEBOV followed by MVA-BN-Filo (Ebola vaccine group) or two doses of meningococcal quadrivalent conjugate vaccine (control group) administered 56 days apart. Infants were recruited at two sites in west Africa: Conakry, Guinea, and Kambia, Sierra Leone. All infants received the meningococcal vaccine 8 months after being randomly assigned. The primary objective was safety. The secondary objective was immunogenicity, measured as EBOV glycoprotein-binding antibody concentration 21 days post-dose 2, using the Filovirus Animal Non-Clinical Group ELISA. This study is registered with ClinicalTrials.gov (NCT03929757) and the Pan African Clinical Trials Registry (PACTR201905827924069). FINDINGS: From Aug 20 to Nov 29, 2019, 142 infants were screened and 108 were randomly assigned (Ebola vaccine n=75; control n=33). The most common solicited local adverse event was injection-site pain (Ebola vaccine 15 [20%] of 75; control four [12%] of 33). The most common solicited systemic adverse events with the Ebola vaccine were irritability (26 [35%] of 75), decreased appetite (18 [24%] of 75), pyrexia (16 [21%] of 75), and decreased activity (15 [20%] of 75). In the control group, ten (30%) of 33 had irritability, seven (21%) of 33 had decreased appetite, three (9%) of 33 had pyrexia, and five (15%) of 33 had decreased activity. The frequency of unsolicited adverse events was 83% (62 of 75 infants) in the Ebola vaccine group and 85% (28 of 33 infants) in the control group. No serious adverse events were vaccine-related. In the Ebola vaccine group, EBOV glycoprotein-binding antibody geometric mean concentrations (GMCs) at 21 days post-dose 2 were 27 700 ELISA units (EU)/mL (95% CI 20 477-37 470) in infants aged 4-8 months and 20 481 EU/mL (15 325-27 372) in infants aged 9-11 months. The responder rate was 100% (74 of 74 responded). In the control group, GMCs for both age groups were less than the lower limit of quantification and the responder rate was 3% (one of 33 responded). INTERPRETATION: Ad26.ZEBOV and MVA-BN-Filo was well tolerated and induced strong humoral responses in infants younger than 1 year. There were no safety concerns related to vaccination. FUNDING: Janssen Vaccines & Prevention and Innovative Medicines Initiative 2 Joint Undertaking. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Humans , Infant , Ebola Vaccines/adverse effects , Hemorrhagic Fever, Ebola/prevention & control , Sierra Leone , Guinea , Antibodies, Viral , Double-Blind Method , Glycoproteins , Fever
2.
Lancet Infect Dis ; 23(3): 352-360, 2023 03.
Article in English | MEDLINE | ID: mdl-36273490

ABSTRACT

BACKGROUND: Children account for a substantial proportion of cases and deaths during Ebola virus disease outbreaks. We aimed to evaluate the safety and immunogenicity of a booster dose of the Ad26.ZEBOV vaccine in children who had been vaccinated with a two-dose regimen comprising Ad26.ZEBOV as dose one and MVA-BN-Filo as dose two. METHODS: We conducted an open-label, non-randomised, phase 2 trial at one clinic in Kambia Town, Sierra Leone. Healthy children, excluding pregnant or breastfeeding girls, who had received the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen in a previous study, and were aged 1-11 years at the time of their first vaccine dose, received an intramuscular injection of Ad26.ZEBOV (5 × 1010 viral particles) and were followed up for 28 days. Primary outcomes were safety (measured by adverse events) and immunogenicity (measured by Ebola virus glycoprotein-specific IgG binding antibody geometric mean concentration) of the booster vaccine dose. Safety was assessed in all participants who received the booster vaccination; immunogenicity was assessed in all participants who received the booster vaccination, had at least one evaluable sample after the booster, and had no major protocol deviations that could have influenced the immune response. This trial is registered with ClinicalTrials.gov, NCT04711356. FINDINGS: Between July 8 and Aug 18, 2021, 58 children were assessed for eligibility and 50 (27 aged 4-7 years and 23 aged 9-15 years) were enrolled and received an Ad26.ZEBOV booster vaccination, more than 3 years after receiving dose one of the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen. The booster was well tolerated. The most common solicited local adverse event during the 7 days after vaccination was injection site pain, reported in 18 (36%, 95% CI 23-51) of 50 participants. The most common solicited systemic adverse event during the 7 days after vaccination was headache, reported in 11 (22%, 12-36) of 50 participants. Malaria was the most common unsolicited adverse event during the 28 days after vaccination, reported in 25 (50%, 36-64) of 50 participants. No serious adverse events were observed during the study period. 7 days after vaccination, the Ebola virus glycoprotein-specific IgG binding antibody geometric mean concentration was 28 561 ELISA units per mL (95% CI 20 255-40 272), which was 44 times higher than the geometric mean concentration before the booster dose. 21 days after vaccination, the geometric mean concentration reached 64 690 ELISA units per mL (95% CI 48 356-86 541), which was 101 times higher than the geometric mean concentration before the booster dose. INTERPRETATION: A booster dose of Ad26.ZEBOV in children who had received the two-dose Ad26.ZEBOV and MVA-BN-Filo vaccine regimen more than 3 years earlier was well tolerated and induced a rapid and robust increase in binding antibodies against Ebola virus. These findings could inform Ebola vaccination strategies in paediatric populations. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Female , Humans , Child , Hemorrhagic Fever, Ebola/prevention & control , Antibodies, Viral , Vaccinia virus , Glycoproteins , Immunoglobulin G , Immunogenicity, Vaccine
3.
Cell ; 148(3): 515-29, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22284910

ABSTRACT

A long-standing question in the study of long-term memory is how a memory trace persists for years when the proteins that initiated the process turn over and disappear within days. Previously, we postulated that self-sustaining amyloidogenic oligomers of cytoplasmic polyadenylation element-binding protein (CPEB) provide a mechanism for the maintenance of activity-dependent synaptic changes and, thus, the persistence of memory. Here, we found that the Drosophila CPEB Orb2 forms amyloid-like oligomers, and oligomers are enriched in the synaptic membrane fraction. Of the two protein isoforms of Orb2, the amyloid-like oligomer formation is dependent on the Orb2A form. A point mutation in the prion-like domain of Orb2A, which reduced amyloid-like oligomerization of Orb2, did not interfere with learning or memory persisting up to 24 hr. However the mutant flies failed to stabilize memory beyond 48 hr. These results support the idea that amyloid-like oligomers of neuronal CPEB are critical for the persistence of long-term memory.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/physiology , Transcription Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Amino Acid Sequence , Amyloid/metabolism , Animals , Aplysia/metabolism , Brain/metabolism , Drosophila Proteins/chemistry , Memory , Molecular Sequence Data , Neurons/metabolism , Point Mutation , Protein Isoforms/metabolism , Synapses/metabolism , Transcription Factors/chemistry , mRNA Cleavage and Polyadenylation Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...