Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
RSC Adv ; 11(45): 27880-27896, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-35480732

ABSTRACT

Non-thermal plasma (NTP) is widely used in the disinfection and surface modification of biomaterials. NTP treatment can regenerate and improve skin function; however, its effectiveness on hair follicle (HF) growth and its underlying mechanisms need to be elucidated. Herein, we propose an air-based NTP treatment, which generates exogenous nitric oxide (eNO), as a therapeutic strategy for hair growth. The topical application of air-based NTP generates large amounts of eNO, which can be directly detected using a microelectrode NO sensor, in the dermis of mouse dorsal skin. Additionally, NTP-induced eNO has no cytotoxicity in normal human skin cells and promotes hair growth by increasing capillary tube formation, cellular proliferation, and hair/angiogenesis-related protein expression. Furthermore, NTP treatment promotes hair growth with adipogenesis and activation of CD34+CD44+ stem cells and improves the inter-follicular macroenvironment via increased perifollicular vascularity in the mouse hair regrowth model. Given the importance of the hair follicle (HF) cycle ratio (growth vs. regression vs. resting) in diagnosing alopecia, NTP treatment upregulates the stem cell activity of the HF to promote the anagen : catagen : telogen ratio, leading to improved hair growth. We confirmed the upregulation of increasing Wnt/ß-catenin signaling and activation of perifollicular adipose tissue and angiogenesis in HF regeneration. In conclusion, these results show that the eNO from NTP enhances the cellular activities of human skin cells and endothelial cells in vitro and stem cells in vivo, thereby increasing angiogenesis, adipogenesis, and hair growth in the skin dermis. Furthermore, the results of this study suggest that NTP treatment may be a highly efficient alternative in regenerative medicine for achieving enhanced hair growth.

2.
Biomedicines ; 8(11)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233771

ABSTRACT

The aim of this study was to demonstrate the anti-inflammatory effect of Lactobacillus kefirgranum PRCC-1301-derived extracellular vesicles (PRCC-1301 EVs) on intestinal inflammation and intestinal barrier function. Human intestinal epithelial cells (IECs) Caco-2 were treated with PRCC-1301 EVs and then stimulated with dextran sulfate sodium (DSS). Real-time RT-PCR revealed that PRCC-1301 EVs inhibited the expression of pro-inflammatory cytokines in Caco-2 cells. PRCC-1301 EVs enhanced intestinal barrier function by maintaining intestinal cell integrity and the tight junction. Loss of Zo-1, claudin-1, and occludin in Caco-2 cells and the colitis tissues was recovered after PRCC-1301 EVs treatment, as evidenced by immunofluorescence analysis. Acute murine colitis was induced using 4% DSS and chronic colitis was generated in piroxicam-treated IL-10-/- mice. PRCC-1301 EVs attenuated body weight loss, colon shortening, and histological damage in acute and chronic colitis models in mice. Immunohistochemistry revealed that phosphorylated NF-κB p65 and IκBα were reduced in the colon tissue sections treated with PRCC-1301 EVs. Our results suggest that PRCC-1301 EVs may have an anti-inflammatory effect on colitis by inhibiting the NF-κB pathway and improving intestinal barrier function.

3.
Stem Cells Int ; 2018: 4851949, 2018.
Article in English | MEDLINE | ID: mdl-29849663

ABSTRACT

Cancer stem cells (CSCs) with self-renewal abilities endorse cellular heterogeneity, resulting in metastasis and recurrence. However, there are no promising therapeutics directed against CSCs. Herein, we found that miR-503-3p inhibited tumor growth via the regulation of CSC proliferation and self-renewal. miR-503-3p, isolated from human adipose stem cell- (ASC-) derived exosomes, suppressed initiation and progression of CSCs as determined by anchorage-dependent (colony formation) and anchorage-independent (tumorsphere formation) assays. The expression of pluripotency genes was significantly decreased in miR-503-3p-treated CSCs. Furthermore, xenografts, which received miR-503-3p, exhibited remarkably reduced tumor growth in vivo. Thus, miR-503-3p may function as a stemness-attenuating factor via cell-to-cell communications.

4.
Stem Cells Int ; 2018: 3891404, 2018.
Article in English | MEDLINE | ID: mdl-29765409

ABSTRACT

Multipotent stem cells have the capacity to generate terminally differentiated cell types of each lineage; thus, they have great therapeutic potential for a wide variety of diseases. The most widely available stem cells are derived from human tissues, and their use for therapeutic application is limited by their high cost and low productivity. Herein, we report that conditioned media of mesenchymal stem cells (MSCs) isolated from deer antlers enhanced tissue regeneration through paracrine action via a combination of secreted growth factors and cytokines. Notably, DaMSC-conditioned media (DaMSC-CM) enhanced hair regeneration by activating the Wnt signaling pathway. In addition, DaMSC-CM had regenerative potential in damaged skin tissue through induction of skin regeneration-related genes. Remarkably, we identified round vesicles derived from DaMSC-CM, with an average diameter of ~120 nm that were associated with hair follicle formation, suggesting that secretory vesicles may act as paracrine mediators for modulation of local cellular responses. In addition, these secretory vesicles could regulate the expression of Wnt-3a, Wnt-10b, and lymphoid enhancer-binding factor-1 (LEF-1), which are related to tissue renewal. Thus, our findings demonstrate that the use of DaMSC-CM as a unique natural model for rapid and complete tissue regeneration has possible application for therapeutic development.

5.
Clin Exp Otorhinolaryngol ; 11(4): 281-287, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29764011

ABSTRACT

OBJECTIVES: Regenerative treatment using stem cells may serve as treatment option for empty nose syndrome (ENS), which is caused by the lack of turbinate tissue and deranged nervous system in the nasal cavity. We aimed to assess the efficacy and safety of the autologous stromal vascular fraction (SVF) in the treatment of ENS. METHODS: In this prospective observational clinical study, we enrolled 10 ENS patients who volunteered to undergo treatment of ENS through the injection of autologous SVF. Data, including demographic data, pre- and postoperative Sino-Nasal Outcome Test-25 (SNOT-25) scores, overall patient satisfaction, and postoperative complications, were prospectively collected. Nasal secretion was assessed using the polyurethane foam absorption method, and the levels of biological markers were analyzed in both ENS group and control group using enzyme-linked immunosorbent assay. The SVF extracted from abdominal fat was diluted and injected into both inferior turbinates. RESULTS: Among the 10 initial patients, one was excluded from the study. Subjective satisfaction was rated as "much improved" in two and "no change" in seven. Among the improved patients, the mean preinjection SNOT-25 score was 55.0 and the score at 6 months after injection was 19.5. However, the average SNOT-25 score of nine participants at 6 months after injection (mean±standard deviation, 62.4±35.8) did not differ significantly from the baseline SNOT25 score (70.1±24.7, P>0.05, respectively). Among the various inflammatory markers assessed, the levels of interleukin (IL)-1ß, IL-8, and calcitonin gene-related peptide were significantly higher in ENS patients. Compared with preinjection secretion level, the nasal secretions from SVF-treated patients showed decreased expressions of IL-1ß and IL-8 after injection. CONCLUSION: Although SVF treatment appears to decrease the inflammatory cytokine levels in the nasal mucosa, a single SVF injection was not effective in terms of symptom improvement and patient satisfaction. Further trials are needed to identify a more practical and useful regenerative treatment modality for patients with ENS.

6.
Exp Dermatol ; 27(10): 1170-1172, 2018 10.
Article in English | MEDLINE | ID: mdl-28940813

ABSTRACT

This study was undertaken to evaluate whether exosomes from human adipose-derived stem cells (ASC-exo) can stimulate the regeneration of human dermal fibroblasts (HDFs). Immunoblotting and FACS analyses showed that ASC-exo was positive for exosome markers. Fluorescence tracking revealed that the contents of ASC-exo were transferred into the HDFs. ASC-exo treatment also stimulated the proliferation and migration of HDFs in a dose-dependent manner. Similarly, the expression levels of genes involved in skin cell proliferation were increased by ASC-exo. Microarray analysis showed an enrichment of microRNAs that have regenerative function. We suggest that the ASC-exo can stimulate skin cell proliferation.


Subject(s)
Cell Movement , Cell Proliferation , Exosomes , Fibroblasts/physiology , MicroRNAs/analysis , Adipose Tissue/cytology , Cells, Cultured , Humans , Oligonucleotide Array Sequence Analysis , Regeneration , Skin/cytology , Stem Cells
7.
Biochem Biophys Res Commun ; 482(2): 215-220, 2017 Jan 08.
Article in English | MEDLINE | ID: mdl-27840051

ABSTRACT

Protein phosphatase 5 (PP5) is a serine/threonine phosphatase that belongs to the PPP family phosphatases. PP5 and the other phosphatases of the PPP family share significantly similar catalytic domain structure. Due to this structural similarity, natural competitive inhibitors such as okadaic acid and cantharidin exhibit broad specificity over the PPP family phosphatases. In this study, we report the identification of three PP5 inhibitors, Ro 90-7501, aurothioglucose, and N-oleoyldopamine, along with a novel inhibitory mechanism of Ro 90-7501. Unlike other inhibitors binding to the phosphatase domain, Ro 90-7501 inhibited PP5 in a TPR-dependent manner. This TPR-dependent PP5 inhibition shown by Ro 90-7501 is a unique and novel inhibitory mechanism, which might be a useful tool for studies of PP5 on both regulatory mechanism and drug discovery.


Subject(s)
Amines/chemistry , Benzimidazoles/chemistry , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/chemistry , Binding Sites , Enzyme Activation , Protein Binding , Protein Domains
8.
J Biotechnol ; 162(2-3): 246-52, 2012 Dec 31.
Article in English | MEDLINE | ID: mdl-23063969

ABSTRACT

The need for efficient high-throughput gene delivery system for mammalian cells is rapidly increasing with the growing request for functional genomics studies and drug discoveries in various physiologically relevant systems. However, plasmid-based gene delivery has limitations in transfection efficiency and available cell types. Viral vectors have great advantages over plasmid-based vectors, but construction of recombinant viruses remains to be a big hurdle for high-throughput applications. Here we demonstrate a rapid and simple high-throughput system for constructing recombinant adenoviruses which have been used as efficient gene delivery tools in mammalian systems in vitro and in vivo. By combining Gateway-based site-specific recombination with Terminal protein-coupled adenovirus vector, the adenovirus high-throughput system (AdHTS) generates multiple recombinant adenoviruses in 96-well plates simultaneously without the need for additional cloning or recombination in bacteria or mammalian cells. The AdHTS allows rapid and robust cloning and expression of genes in mammalian cells by removing shuttle vector construction, bacterial transformation, or selection and by minimizing effort in plaque isolation. By shortening the time required to convert whole cDNA library into desired viral vector constructs, the AdHTS would greatly facilitate functional genomics and proteomics studies in various mammalian systems.


Subject(s)
Adenoviridae/genetics , Cloning, Molecular/methods , Genetic Vectors , High-Throughput Screening Assays/methods , Recombination, Genetic , Biotechnology/methods , DNA, Viral/genetics , HEK293 Cells , Humans
9.
Biomol Ther (Seoul) ; 20(1): 104-12, 2012 Jan.
Article in English | MEDLINE | ID: mdl-24116282

ABSTRACT

The fruit of Terminalia chebula Retzius has been used as a panacea in India and Southeast Asia but its biological activities have not been fully elucidated. Here we report anti-arthritic and analgesic effect of NDI10218, a standardized ethanol extract of Terminalia chebula, on collagen-induced arthritis and acetic acid-induced writhing model, respectively. Arthritis was induced in DBA/1J mice by immunizing bovine type II collagen and mice were treated with NDI10218 daily for 5 weeks after the onset of the disease. NDI10218 reduced the arthritis index and blocked the synovial hyperplasia in a dose-dependent manner. The serum levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß were significantly reduced in mice treated with NDI10218. Production of the inflammatory IL-17, but not immunosuppressive IL-10, was also inhibited in splenocytes isolated from NDI10218-treated arthritis mice. Administration of NDI10218 markedly decreased the number of T cell subpopulations in the regional lymph nodes of the arthritis mice. Finally, NDI10218 reduced the number of abdominal contractions in acetic acid-induced writhing model, suggesting an analgesic effect of this extract. Taken together, these results suggest that NDI10218 can be a new therapeutic candidate for the treatment of rheuma-toid arthritis.

10.
Biochem Biophys Res Commun ; 417(2): 800-6, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22197824

ABSTRACT

We have previously reported anti-obesity effects of Lysimachia foenum-graecum in high-fat diet (HFD)-induced obesity model. Here we isolated a triterpene saponin foenumoside B as an active component of L. foenum-graecum. Foenumoside B blocked the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner with an IC50 of 0.2 µg/ml in adipogenesis assay and suppressed the induction of PPARγ, the master regulator of adipogenesis. Foenumoside B induced the activation of AMP-activated protein kinase (AMPK), and modulated the expression of genes involved in lipid metabolism towards lipid breakdown in differentiated adipocytes. In mouse model, oral administration of foenumoside B (10mg/kg/day for 6 weeks) reduced HFD-induced body weight gain significantly without affecting food intake. Treatment of foenumoside B suppressed lipid accumulation in white adipose tissues and the liver, and lowered blood levels of glucose, triglycerides, ALT, and AST in HFD-induced obese mice. Consistent with the in vitro results, foenumoside B activated AMPK signaling, suppressed the expression of lipogenic genes, and enhanced the expression of lipolytic genes in vivo. Foenumoside B also blocked HFD-induced proinflammatory cytokine production in adipose tissue, suggesting its protective role against insulin resistance. Taken together, these findings demonstrate that foenumoside B represents the anti-obesity effects of L. foenum-graecum, and suggest therapeutic potential of foenumoside B in obesity and obesity-related metabolic diseases.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Anti-Obesity Agents/therapeutic use , Diet, High-Fat/adverse effects , Obesity/drug therapy , Primulaceae/chemistry , Saponins/therapeutic use , 3T3-L1 Cells , AMP-Activated Protein Kinase Kinases , Adipocytes/cytology , Animals , Anti-Obesity Agents/pharmacology , Enzyme Activation , Gene Expression/drug effects , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Protein Kinases/biosynthesis , Saponins/pharmacology
11.
Exp Mol Med ; 43(4): 205-15, 2011 Apr 30.
Article in English | MEDLINE | ID: mdl-21389766

ABSTRACT

Lysimachia foenum-graecum has been used as an oriental medicine with anti-inflammatory effect. The anti-obesity effect of L. foenum-graecum extract (LFE) was first discovered in our screening of natural product extract library against adipogenesis. To characterize its anti-obesity effects and to evaluate its potential as an anti-obesity drug, we performed various obesity-related experiments in vitro and in vivo. In adipogenesis assay, LFE blocked the differentiation of 3T3-L1 preadipocyte in a dose-dependent manner with an IC50 of 2.5 µg/ml. In addition, LFE suppressed the expression of lipogenic genes, while increasing the expression of lipolytic genes in vitro at 10 µg/ml and in vivo at 100 mg/kg/day. The anti-adipogenic and anti-lipogenic effect of LFE seems to be mediated by the inhibition of PPARγ and C/EBPα expression as shown in in vitro and in vivo, and the suppression of PPARγ activity in vitro. Moreover, LFE stimulated fatty acid oxidation in an AMPK-dependent manner. In high-fat diet (HFD)-induced obese mice (n = 8/group), oral administration of LFE at 30, 100, and 300 mg/kg/day decreased total body weight gain significantly in all doses tested. No difference in food intake was observed between vehicle- and LFE-treated HFD mice. The weight of white adipose tissues including abdominal subcutaneous, epididymal, and perirenal adipose tissue was reduced markedly in LFE-treated HFD mice in a dose-dependent manner. Treatment of LFE also greatly improved serum levels of obesity-related biomarkers such as glucose, triglycerides, and adipocytokines leptin, adiponectin, and resistin. All together, these results showed anti-obesity effects of LFE on adipogenesis and lipid metabolism in vitro and in vivo and raised a possibility of developing LFE as anti-obesity therapeutics.


Subject(s)
Adipogenesis/drug effects , Anti-Obesity Agents/therapeutic use , Lipid Metabolism/drug effects , Plant Extracts/pharmacology , Primulaceae/chemistry , 3T3-L1 Cells , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue, White , Animals , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/pharmacology , Body Weight/drug effects , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Differentiation/drug effects , Eating/drug effects , Fatty Acids/metabolism , Gene Expression/drug effects , Lipids , Lipogenesis/drug effects , Mice , Mice, Inbred C57BL , Obesity/prevention & control , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , Plants, Medicinal
12.
Yonsei Med J ; 43(1): 25-30, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11854928

ABSTRACT

Ionizing radiation has long been used in medicine since the discovery of X-rays. Diagnostic imaging using synchrotron radiation has been under investigation since Rubenstein et al. reported dual-energy iodine-K-edge subtraction coronary angiography. Recently, computed tomography (CT) and magnetic resonance imaging (MRI) have provided better quality results than conventional radiology, providing important information on human internal structures. However, such techniques are unable to detect fine micron sized structures for the early diagnosis of tumors, vascular diseases and other medical objectives. Third generation synchrotron X-rays are well known for their superiority in coherence and energy tunability with respect to conventional X-rays. Consequently, new contrast mechanisms with a superior spatial resolution are becoming available. Here we present the extremely fine details of live animal internal structures using unmonochromatized synchrotron X-rays (white beam) and a simple detector system. Natural movements of the internal organs are also shown. The results indicate that this imaging technique can be applied to investigating microstructures and evaluating the function of the internal organs. Furthermore, this imaging system may be applied to humans as the next tool beyond CT and MRI.


Subject(s)
Diagnostic Imaging , Synchrotrons , Animals , Male , Mice , Mice, Hairless
SELECTION OF CITATIONS
SEARCH DETAIL
...