Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35206652

ABSTRACT

Walking patterns can be used as a key parameter in identifying individuals, as it varies visually depending on one's body size as well as their habits, gender, and age group. In this study, we measure the gait characteristics of a large number of subjects using 34 visual parameters to identify significant parameters that can be used to distinguish individual walking features. We recorded 291 subjects' walking on a constructed footpath using four video cameras, and data on parameters was calculated at the points of double support, toe-off, and heel-strike. K-means Clustering Analysis and ANOVA were conducted to determine the difference between age, gender, and BMI. As a result, we confirm that parameters related to the spine, neck, and feet are useful for identifying individuals. In the comparative analysis between age groups, the older the age, the more significant variables appeared in the upper body. The difference between genders showed significant parameters in both the upper and lower bodies of males. Similarly, among the large BMI groups, we also derived significant results in the upper and lower bodies. The key parameters derived from this study can be used more effectively in the real-world visual analysis of gait, as the walking characteristics of a large number of subjects have been measured with a similar view as real-world CCTV. This study will be effectively utilized as a foundation for future research attempting to identify people through their gait by distinguishing major gait characteristic differences.


Subject(s)
Gait Analysis , Gait , Female , Foot , Heel , Humans , Male , Walking
2.
Sensors (Basel) ; 21(14)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34300434

ABSTRACT

Air flow measurements provide significant information required for understanding the characteristics of insect movement. This study proposes a four-channel low-noise readout integrated circuit (IC) in order to measure air flow (air velocity), which can be beneficial to insect biomimetic robot systems that have been studied recently. Instrumentation amplifiers (IAs) with low-noise characteristics in readout ICs are essential because the air flow of an insect's movement, which is electrically converted using a microelectromechanical systems (MEMS) sensor, generally produces a small signal. The fundamental architecture employed in the readout IC is a three op amp IA, and it accomplishes low-noise characteristics by chopping. Moreover, the readout IC has a four-channel input structure and implements an automatic offset calibration loop (AOCL) for input offset correction. The AOCL based on the binary search logic adjusts the output offset by controlling the input voltage bias generated by the R-2R digital-to-analog converter (DAC). The electrically converted air flow signal is amplified using a three op amp IA, which is passed through a low-pass filter (LPF) for ripple rejection that is generated by chopping, and converted to a digital code by a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC). Furthermore, the readout IC contains a low-dropout (LDO) regulator that enables the supply voltage to drive digital circuits, and a serial peripheral interface (SPI) for digital communication. The readout IC is designed with a 0.18 µm CMOS process and the current consumption is 1.886 mA at 3.3 V supply voltage. The IC has an active area of 6.78 mm2 and input-referred noise (IRN) characteristics of 95.4 nV/√Hz at 1 Hz.


Subject(s)
Flowmeters , Signal Processing, Computer-Assisted , Amplifiers, Electronic , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...