Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36236548

ABSTRACT

Soil moisture has been considered a key variable in governing the terrestrial ecosystem. However, it is challenging to preserve indigenous soil characteristics using conventional soil moisture monitoring methods that require maximum soil contacts. To overcome this issue, we developed a non-destructive method of evaluating soil moisture using a contactless ultrasonic system. This system was designed to measure leaky Rayleigh waves at the air-soil joint-half space. The influences of soil moisture on leaky Rayleigh waves were explored under sand, silt, and clay in a controlled experimental design. Our results showed that there were strong relationships between the energy and amplitude of leaky Rayleigh waves and soil moisture for all three soil cases. These results can be explained by reduced soil strengths during evaporation processes for coarse soil particles as opposed to fine soil particles. To evaluate soil moisture based on the dynamic parameters and wave properties obtained from the observed leaky Rayleigh waves, we used the random forest model. The accuracy of predicted soil moisture was exceptional for test data sets under all soil types (R2 ≥ 0.98, RMSE ≤ 0.0089 m3 m-3). That is, our study demonstrated that the leaky Rayleigh waves had great potential to continuously assess soil moisture variations without soil disturbances.


Subject(s)
Ecosystem , Soil , Clay , Sand , Ultrasonics
2.
Sensors (Basel) ; 22(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36146379

ABSTRACT

A recently developed contactless ultrasonic testing scheme is applied to define the optimal saw-cutting time for concrete pavement. The ultrasonic system is improved using wireless data transfer for field applications, and the signal processing and data analysis are proposed to evaluate the modulus of elasticity of early-age concrete. Numerical simulation of leaky Rayleigh wave in joint-half space including air and concrete is performed to demonstrate the proposed data analysis procedure. The hardware and algorithms developed for the ultrasonic system are experimentally validated with a comparison of saw-cutting procedures. In addition, conventional methods for the characterization of early-age concrete, including pin penetration and maturity methods, are applied. The results demonstrated that the developed wireless system presents identical results to the wired system, and the initiation time of leaky Rayleigh wave possibly represents 5% of raveling damage compared to the optimal saw cutting. Further data analysis implies that saw-cutting would be optimally performed at approximately 11.5 GPa elastic modulus of concrete obtained by the wireless and contactless ultrasonic system.


Subject(s)
Algorithms , Ultrasonics , Computer Simulation , Elastic Modulus , Elasticity
3.
Materials (Basel) ; 14(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34300849

ABSTRACT

Prestressed concrete (PSC) is widely used for the construction of bridges. The collapse of several bridges with PSC has been reported, and insufficient grout and tendon corrosion were found inside the ducts of these bridges. Therefore, non-destructive testing (NDT) technology is important for identifying defects inside ducts in PSC structures. Electromagnetic (EM) waves have limited detection of internal defects in ducts due to strong reflections from the surface of the steel ducts. Spectral analysis of the existing impact echo (IE) method is limited to specific conditions. Moreover, the flexural mode in upper defects of ducts located at a shallow depth and delamination defects inside ducts are not considered. In this study, the applicability of the elastic wave of IE was analyzed, and multichannel analysis of surface, EM, and shear waves was employed to evaluate six types of PSC structures. A procedure using EM waves, IE, and principal component analysis (PCA) was proposed for a more accurate classification of defect types inside ducts. The proposed procedure was effective in classifying upper, internal, and delamination defects of ducts under 100 mm in thickness, and it could be utilized up to 200 mm in the case of duct defect limitations.

4.
Sensors (Basel) ; 21(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069052

ABSTRACT

We propose a novel contactless ultrasonic method for monitoring the hardening behavior of cementitious materials. The goal of this method is to obtain high-quality data to compare the unique hardening process between rapid setting cement (RSC) and ordinary Portland cement (OPC) mortars without physical coupling to the surface of the specimens. To monitor the hardening behavior of cementitious materials, conventional approaches use contact or embedded-type sensors, which limit field application. Our solution is to measure leaky Rayleigh waves at the interface between air and cementitious materials, which allows for the estimation of the physical state of the medium in real time. The modulus development was back-calculated based on the increment of wave velocity using the developed sensor array and transform-based signal processing. We experimentally demonstrated that the proposed method possibly exhibits unique hardening information about flash setting, effects of a retarder, and modulus increments from RSC specimens.

5.
Article in English | MEDLINE | ID: mdl-26067042

ABSTRACT

Newly developed ultrasonic imaging technology for large concrete elements, based on tomographic reconstruction, is presented. The developed 3-D internal images (velocity tomograms) are used to detect internal defects (polystyrene foam and pre-cracked concrete prisms) that represent structural damage within a large steel reinforced concrete element. A hybrid air-coupled/contact transducer system is deployed. Electrostatic air-coupled transducers are used to generate ultrasonic energy and contact accelerometers are attached on the opposing side of the concrete element to detect the ultrasonic pulses. The developed hybrid testing setup enables collection of a large amount of high-quality, through-thickness ultrasonic data without surface preparation to the concrete. The algebraic reconstruction technique is used to reconstruct p-wave velocity tomograms from the obtained time signal data. A comparison with a one-sided ultrasonic imaging method is presented for the same specimen. Through-thickness tomography shows some benefit over one-sided imaging for highly reinforced concrete elements. The results demonstrate that the proposed through-thickness ultrasonic technique shows great potential for evaluation of full-scale concrete structures in the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...