Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(5): e0267466, 2022.
Article in English | MEDLINE | ID: mdl-35511775

ABSTRACT

OBJECTIVES: The preventive effects of Korean red ginseng (KRG) on bone loss and microarchitectural deterioration have been extensively studied in animal models. However, few results have been reported for the effects of KRG on the trabecular microarchitecture as compared to changes resulting from physiological stimuli such as exercise load. We compared the effects of KRG and jump exercise on improvements in trabecular microarchitecture and strength of the distal femoral metaphysis in rats. METHODS AND MATERIALS: Eleven-week-old male Wistar rats were divided into sedentary (CON), KRG-administered (KRG), and jump-exercised (JUM) groups. Rats were orally administered KRG extract (200 mg/kg body weight/day) once a day for 6 weeks. The jump exercise protocol comprised 10 jumps/day, 5 days/week at a jump height of 40 cm. We used microcomputed tomography to assess the microarchitecture, volumetric bone mineral density (vBMD), and fracture load as predicted by finite element analysis at the right distal femoral metaphysis. The left femur was used for the quantitative bone histomorphometry measurements. RESULTS: Although KRG produced significantly higher trabecular bone volume (BV/TV) than CON, BV/TV was even higher in JUM than in KRG, and differences in vBMD and fracture load were only significant between JUM and CON. In terms of trabecular microarchitecture, KRG increased trabecular number and connectivity, whereas the JUM group showed increased trabecular thickness. Bone resorption showed significant decrease by JUM and KRG group. In contrast, bone formation showed significant increase by JUM group. CONCLUSIONS: These data show that KRG has weak but significant positive effects on bone mass and suggest that the effects on trabecular microarchitecture differ from those of jump exercise. The effects of combined KRG and jump exercise on trabecular bone mass and strength should be investigated.


Subject(s)
Cancellous Bone , Panax , Animals , Bone Density/physiology , Cancellous Bone/diagnostic imaging , Male , Rats , Rats, Wistar , X-Ray Microtomography
2.
Phys Act Nutr ; 24(1): 1-8, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32408407

ABSTRACT

PURPOSE: This study compared differences in trabecular bone architecture and strength caused by jump and running exercises in rats. METHODS: Ten-week-old male Wistar rats (n=45) were randomly assigned to three body weight-matched groups: a sedentary control group (CON, n=15); a treadmill running group (RUN, n=15); and a jump exercise group (JUM, n=15). Treadmill running was performed at 25 m/min without inclination, 1 h/day, 5 days/week for 8 weeks. The jump exercise protocol comprised 10 jumps/day, 5 days/week for 8 weeks, with a jump height of 40 cm. We used microcomputed tomography to assess microarchitecture, mineralization density, and fracture load as predicted by finite element analysis (FEA) at the distal femoral metaphysis. RESULTS: Both jump and running exercises produced significantly higher trabecular bone mass, thickness, number, and fracture load compared to the sedentary control group. The jump and running exercises, however, showed different results in terms of the structural characteristics of trabecular bone. Jump exercises enhanced trabecular bone mass by thickening the trabeculae, while running exercises did so by increasing the trabecular number. FEA-estimated fracture load did not differ significantly between the exercise groups. CONCLUSION: This study elucidated the differential effects of jump and running exercise on trabecular bone architecture in rats. The different structural changes in the trabecular bone, however, had no significant impact on trabecular bone strength.

3.
Springerplus ; 2: 331, 2013.
Article in English | MEDLINE | ID: mdl-23961402

ABSTRACT

Geometry of the proximal femur is one determinant of fracture risk, and can be analyzed by a simple method using dual-energy X-ray absorptiometry (DXA). The aim of the present study was to investigate the accuracy of hip structural analysis (HSA) using clinical data in postmenopausal Japanese women. A total of 184 postmenopausal women aged 51-88 years (mean, 70.5 ± 8.7 years) who underwent artificial joint replacement surgery for osteoarthrosis of the hip or knee joint were included. Computed tomography (CT) data from preoperative assessment were utilized for analysis of proximal femoral geometry (CT-HSA) using QCTPro Software (Mindways Software Inc., Austin, TX) and compared with HSA results based on DXA (DXA-HSA). The results of femoral geometry were further compared with a CT-based finite-element method (CT/FEM). There was moderate to high correlation between DXA-HSA and CT-HSA (r=0.60-0.90, p<0.001), except for the buckling ratio in the intertrochanteric region. Moreover, the correlation of HSA with CT/FEM was similar between DXA-HSA and CT-HSA. The present results suggest that the geometry of proximal femoral cross sections can be reasonably well characterized using DXA.

4.
Springerplus ; 2(1): 35, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23503945

ABSTRACT

Three-dimensional femoral trabecular architecture was investigated in tail-suspended young growing rats and the effects of jump exercise during the period of tail-suspension were also examined. Eight-week-old male Wistar rats (n = 24) were randomly assigned to three body weight-matched groups: a tail suspended group (SUS, n = 8); a sedentary control group (CON, n = 8) and rats primed with jump exercise during the period of tail suspension (JUM, n = 8). The jump exercise protocol consisted of 30 jumps/day, five days/week with a 40 cm jump height. After 3 weeks of jump exercise, bone mineral density (BMD) of the entire right femur was measured using dual energy X-ray absorptiometry. Three-dimensional trabecular bone architecture at the distal femoral metaphysis was evaluated using microcomputed tomography (micro-CT). Tail suspension caused a decrease in femoral BMD (-5%, p < 0.001) and trabecular bone architectural deterioration. Deterioration in the trabecular network during hindlimb unloading was mostly attributed to the reduction of trabecular number (-32%, p < 0.001) in the distal femoral metaphysis. Jump exercise during the tail suspension period increased trabecular thickness (14%, p < 0.001) and the reduction of trabecular number was suppressed. The present data indicate that jump exercise applied during hindlimb unloading could be able to inhibit bone loss and trabecular bone architectural deterioration caused by tail suspension.

5.
J Appl Physiol (1985) ; 112(5): 766-72, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22162526

ABSTRACT

High-impact exercise is considered to be very beneficial for bones. We investigated the ability of jump exercise to restore bone mass and structure after the deterioration induced by tail suspension in growing rats and made comparisons with treadmill running exercise. Five-week-old male Wistar rats (n = 28) were randomly assigned to four body weight-matched groups: a spontaneous recovery group after tail suspension (n = 7), a jump exercise group after tail suspension (n = 7), a treadmill running group after tail suspension (n = 7), and age-matched controls without tail suspension or exercise (n = 7). Treadmill running was performed at 25 m/min, 1 h/day, 5 days/wk. The jump exercise protocol consisted of 10 jumps/day, 5 days/wk, with a jump height of 40 cm. Bone mineral density (BMD) of the total right femur was measured by dual-energy X-ray absorptiometry. Three-dimensional trabecular bone architecture at the distal femoral metaphysis was evaluated using microcomputed tomography. After 5 wk of free remobilization, right femoral BMD, right hindlimb muscle weight, and body weight returned to age-matched control levels, but trabeculae remained thinner and less connected. Although both jump and running exercises during the remobilization period increased trabecular bone mass, jump exercise increased trabecular thickness, whereas running exercise increased trabecular number. These results indicate that restoration of trabecular bone architecture induced by jump exercise during remobilization is predominantly attributable to increased trabecular thickness, whereas running adds trabecular bone mass through increasing trabecular number, and suggest that jumping and running exercises have different mechanisms of action on structural characteristics of trabecular bone.


Subject(s)
Bone Density/physiology , Bone Development/physiology , Bone Diseases, Metabolic/pathology , Femur/anatomy & histology , Physical Conditioning, Animal/physiology , Absorptiometry, Photon/methods , Animals , Body Weight/physiology , Femur/growth & development , Hindlimb Suspension/methods , Male , Muscle, Skeletal/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...