Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Mol Med ; 55(6): 1232-1246, 2023 06.
Article in English | MEDLINE | ID: mdl-37258580

ABSTRACT

SIRT1, a member of the mammalian sirtuin family, is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase with key roles in aging-related diseases and cellular senescence. However, the mechanism by which SIRT1 protein homeostasis is controlled under senescent conditions remains elusive. Here, we revealed that SIRT1 protein is significantly downregulated due to ubiquitin-mediated proteasomal degradation during stress-induced premature senescence (SIPS) and that SIRT1 physically associates with anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase. Ubiquitin-dependent SIRT1 degradation is stimulated by the APC/C coactivator Cdh1 and not by the coactivator Cdc20. We found that Cdh1 depletion impaired the SIPS-promoted downregulation of SIRT1 expression and reduced cellular senescence, likely through SIRT1-driven p53 inactivation. In contrast, AROS, a SIRT1 activator, reversed the SIRT1 degradation induced by diverse stressors and antagonized Cdh1 function through competitive interactions with SIRT1. Furthermore, our data indicate opposite roles for Cdh1 and AROS in the epigenetic regulation of the senescence-associated secretory phenotype genes IL-6 and IL-8. Finally, we demonstrated that pinosylvin restores downregulated AROS (and SIRT1) expression levels in bleomycin-induced mouse pulmonary senescent tissue while repressing bleomycin-promoted Cdh1 expression. Overall, our study provides the first evidence of the reciprocal regulation of SIRT1 stability by APC/C-Cdh1 and AROS during stress-induced premature senescence, and our findings suggest pinosylvin as a potential senolytic agent for pulmonary fibrosis.


Subject(s)
Epigenesis, Genetic , Sirtuin 1 , Animals , Mice , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism , Cellular Senescence , Sirtuin 1/genetics , Sirtuin 1/metabolism , Ubiquitin/metabolism , Ubiquitination
2.
Immune Netw ; 23(1): e10, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36911798

ABSTRACT

Memory T (Tm) cells protect against Ags that they have previously contacted with a fast and robust response. Therefore, developing long-lived Tm cells is a prime goal for many vaccines and therapies to treat human diseases. The remarkable characteristics of Tm cells have led scientists and clinicians to devise methods to make Tm cells more useful. Recently, Tm cells have been highlighted for their role in coronavirus disease 2019 vaccines during the ongoing global pandemic. The importance of Tm cells in cancer has been emerging. However, the precise characteristics and functions of Tm cells in these diseases are not completely understood. In this review, we summarize the known characteristics of Tm cells and their implications in the development of vaccines and immunotherapies for human diseases. In addition, we propose to exploit the beneficial characteristics of Tm cells to develop strategies for effective vaccines and overcome the obstacles of immunotherapy.

3.
Dev Comp Immunol ; 142: 104670, 2023 05.
Article in English | MEDLINE | ID: mdl-36796467

ABSTRACT

The study reports in vivo biofilm infection implemented in an insect model. We mimicked implant-associated biofilm infections in Galleria mellonella larvae using toothbrush bristles and methicillin-resistant Staphylococcus aureus (MRSA). In vivo biofilm formation on bristle was achieved by sequentially injecting a bristle and MRSA into the larval hemocoel. It was found that biofilm formation was in progress without any external sign of infection in most of the bristle-bearing larvae for 12 h after MRSA inoculation. Whereas the activation of the prophenoloxidase system did not affect the preformed in vitro MRSA biofilms, an antimicrobial peptide interfered with in vivo biofilm formation when injected into bristle-bearing larvae infected with MRSA. Finally, our confocal laser scanning microscopic analysis revealed that the biomass of the in vivo biofilm is greater compared to that of the in vitro biofilm and harbors a distribution of dead cells, which might be bacteria and/or host cells.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Moths , Staphylococcal Infections , Animals , Methicillin-Resistant Staphylococcus aureus/physiology , Moths/microbiology , Larva/microbiology , Bacteria , Biofilms , Anti-Bacterial Agents , Microbial Sensitivity Tests
4.
Front Immunol ; 13: 1080855, 2022.
Article in English | MEDLINE | ID: mdl-36591273

ABSTRACT

Memory T cells, which are generated after the primary immune response to cognate antigens, possess unique features compared to naïve or effector T cells. These memory T cells are maintained for a long period of time and robustly reactivate in lymphoid or peripheral tissues where they re-encounter antigens. Environments surrounding memory T cells are importantly involved in the process of the maintenance and reactivation of these T cells. Although memory T cells are generally believed to be formed in response to acute infections, the pathogenesis and persistence of chronic inflammatory diseases, including allergic diseases, are also related to the effector functions of memory CD4 T cells. Thus, the factors involved in the homeostasis of allergen-specific memory CD4 T cells need to be understood to surmount these diseases. Here, we review the characteristics of allergen-specific memory CD4 T cells in allergic diseases and the importance of extrinsic factors for the homeostasis and reactivation of these T cells in the view of mediating persistence, recurrence, and aggravation of allergic diseases. Overall, this review provides a better understanding of memory CD4 T cells to devise effective therapeutic strategies for refractory chronic inflammatory diseases.


Subject(s)
Allergens , Hypersensitivity , Humans , CD4-Positive T-Lymphocytes , Memory T Cells , Homeostasis
5.
Mol Cells ; 44(11): 795-804, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34819396

ABSTRACT

Memory T (TM) cells play an important role in the long-term defense against pathogen reinvasion. However, it is still unclear how these cells receive the crucial signals necessary for their longevity and homeostatic turnover. To understand how TM cells receive these signals, we infected mice with lymphocytic choriomeningitis virus (LCMV) and examined the expression sites of neural cadherin (N-cadherin) by immunofluorescence microscopy. We found that N-cadherin was expressed in the surroundings of the white pulps of the spleen and medulla of lymph nodes (LNs). Moreover, TM cells expressing high levels of killer cell lectin-like receptor G1 (KLRG1), a ligand of N-cadherin, were co-localized with N-cadherin+ cells in the spleen but not in LNs. We then blocked N-cadherin in vivo to investigate whether it regulates the formation or function of TM cells. The numbers of CD127hiCD62Lhi TM cells in the spleen of memory P14 chimeric mice declined when N-cadherin was blocked during the contraction phase, without functional impairment of these cells. In addition, when CD127loKLRG1hi TM cells were adoptively transferred into anti-N-cadherin-treated mice compared with control mice, the number of these cells was reduced in the bone marrow and LNs, without functional loss. Taken together, our results suggest that N-cadherin participates in the development of CD127hiCD62Lhi TM cells and homing of CD127loKLRG1hi TM cells to lymphoid organs.


Subject(s)
Bone Marrow/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cadherins/metabolism , Lymph Nodes/metabolism , Animals , Cell Differentiation , Female , Humans , Mice
6.
Immune Netw ; 21(3): e24, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34277114

ABSTRACT

Due to the inconsistent fluctuation of blood supply for transfusion, much attention has been paid to the development of artificial blood using other animals. Although mini-pigs are candidate animals, contamination of mini-pig T cells in artificial blood may cause a major safety concern. Therefore, it is important to analyze the cross-reactivity of IL-7, the major survival factor for T lymphocytes, between human, mouse, and mini-pig. Thus, we compared the protein sequences of IL-7 and found that porcine IL-7 was evolutionarily different from human IL-7. We also observed that when porcine T cells were cultured with either human or mouse IL-7, these cells did not increase the survival or proliferation compared to negative controls. These results suggest that porcine T cells do not recognize human or mouse IL-7 as their survival factor.

7.
Immune Netw ; 20(3): e20, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32655968

ABSTRACT

Memory CD8+ T cells in the immune system are responsible for the removal of external Ags for a long period of time to protect against re-infection. Naïve to memory CD8+ T cell differentiation and memory CD8+ T cell maintenance require many different factors including local environmental factors. Thus, it has been suggested that the migration of memory CD8+ T cells into specific microenvironments alters their longevity and functions. In this review, we have summarized the subsets of memory CD8+ T cells based on their migratory capacities and described the niche hypothesis for their survival. In addition, the basic roles of CCR7 in conjunction with the migration of memory CD8+ T cells and recent understandings of their survival niches have been introduced. Finally, the applications of altering CCR7 signaling have been discussed.

8.
Cell Death Dis ; 8(12): 3201, 2017 12 11.
Article in English | MEDLINE | ID: mdl-29233982

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipocyte differentiation and is closely linked to the development of obesity. Despite great progress in elucidating the transcriptional network of PPARγ, epigenetic regulation of this pathway by histone modification remains elusive. Here, we found that CDK2-associated cullin 1 (CACUL1), identified as a novel SIRT1 interacting protein, directly bound to PPARγ through the co-repressor nuclear receptor (CoRNR) box 2 and repressed the transcriptional activity and adipogenic potential of PPARγ. Upon CACUL1 depletion, less SIRT1 and more LSD1 were recruited to the PPARγ-responsive gene promoter, leading to increased histone H3K9 acetylation, decreased H3K9 methylation, and PPARγ activation during adipogenesis in 3T3-L1 cells. These findings were reversed upon fasting or resveratrol treatment. Further, gene expression profiling using RNA sequencing supported the repressive role of CACUL1 in PPARγ activation and fat accumulation. Finally, we confirmed CACUL1 function in human adipose-derived stem cells. Overall, our data suggest that CACUL1 tightly regulates PPARγ signaling through the mutual opposition between SIRT1 and LSD1, providing insight into its potential use for anti-obesity treatment.


Subject(s)
Adipocytes/metabolism , Adipogenesis/genetics , Carrier Proteins/genetics , Epigenesis, Genetic , Histone Demethylases/genetics , PPAR gamma/genetics , Sirtuin 1/genetics , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Adipogenesis/drug effects , Animals , Carrier Proteins/metabolism , Cell Differentiation , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Cullin Proteins , HCT116 Cells , HEK293 Cells , Histone Demethylases/metabolism , Histones/genetics , Histones/metabolism , Humans , Mice , PPAR gamma/metabolism , Resveratrol , Sequence Analysis, RNA , Signal Transduction , Sirtuin 1/metabolism , Stilbenes/pharmacology
9.
Cancer Lett ; 376(2): 360-6, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27085459

ABSTRACT

The androgen receptor (AR) plays a critical role in the initiation and progression of prostate cancer (PCa), and thus its regulation is an important tool in PCa therapy. Here, we report that CDK2-associated cullin 1 (CACUL1) directly associates with AR and suppresses AR transcriptional activity. In addition, CACUL1 represses histone demethylase LSD1-mediated AR transactivation by competing with LSD1 for AR binding. Depletion of CACUL1 enhances the LSD1 occupancy of the AR-target promoter, accompanied by decreased accumulation of H3K9me2, a repressive transcriptional marker. CACUL1 and LSD1 oppositely regulate CDX-induced cell death in AR-positive LNCaP and metastatic castrate-resistant LNCaP-LN3 cells. These data suggest that CACUL1 impairs LSD1-mediated activation of AR, thereby implicating it as a potential antitumor target in PCa.


Subject(s)
Cullin Proteins/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Androgen Antagonists/pharmacology , Anilides/pharmacology , Antineoplastic Agents, Hormonal , Cell Line, Tumor , Cullin Proteins/genetics , Gene Expression Regulation, Neoplastic , Histone Demethylases/metabolism , Histones/metabolism , Humans , Male , Methylation , Nitriles/pharmacology , Promoter Regions, Genetic , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Binding , RNA Interference , Receptors, Androgen/drug effects , Receptors, Androgen/genetics , Signal Transduction , Tosyl Compounds/pharmacology , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...