Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35549073

ABSTRACT

In this work, we develop a gate-tunable gas sensor based on a MoS2/hBN heterostructure field effect transistor. Through experimental measurements and numerical simulations, we systematically reveal a principle that relates the concentration of the target gas and sensing signals (ΔI/I0) as a function of gate bias. Because a linear relationship between ΔI/I0 and the gas concentration guarantees reliable sensor operation, the optimal gate bias condition for linearity was investigated. Taking NO2 and NH3 as target molecules, it is clarified that the bias condition greatly depends on the electron accepting/donating nature of the gas. The effects of the bandgap and polarity of the transition metal dichalcogenides (TMDC) channel are also discussed. In order to achieve linearly increasing signals that are stable with respect to the gas concentration, a sufficiently large VBG within VBG > 0 is required. We expect this work will shed light on a way to precisely design reliable semiconducting gas sensors based on the characteristics of TMDC and target gas molecules.

2.
Nanoscale ; 11(11): 4735-4742, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30839984

ABSTRACT

To utilize graphene as interconnection electrodes in high-density nanoelectronic structures, the electrical stability of graphene should be guaranteed under nanometer-scale deviations. Graphene-ribbon (GR) junctions with accessible dimensions (i.e., sub-micrometer widths) are used in diverse interconnection electrode applications and should be characterized properly if they are to be applied in high-density nanoelectronics. Analyzing the effects of nanoscale GR width variations on the conductance of the entire graphene electrode is necessary for their proper characterization. Here, we diagnose the conductance and thermal effect of graphene electrode junctions constructed from GRs of various widths and directions under gate-tuned voltages. On applying partial gate voltages, we identify the effect of local potential variance on the entire graphene electrode junction. As a result, we were able to perceive precise and minute conductance variations for the entire graphene electrode, arising mainly from different sub-micrometer-scale widths of the GRs, which could not be distinguished using conventional global gating methods.

3.
J Nanosci Nanotechnol ; 18(9): 6106-6111, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29677751

ABSTRACT

In order to improve EQE, we have investigated on the role of multilayer graphene (MLG) on the electrical and optical properties of GaN based light-emitting diodes (LEDs) with ultrathin ITO (5 nm or 10 nm)/p-GaN contacts. The MLG was transferred on the ITO/p-GaN to decrease sheet resistance of thin ITO p-electrode and improve the current spreading of LEDs. The LEDs with the ITO 5 nm and MLG/ITO 5 nm structures showed 3.25 and 3.06 V at 20 mA, and 11.69 and 13.02 mW/sr at 400 mA, respectively. After forming MLG on ITO 5 nm, the electro-optical properties were enhanced. Furthermore, the GaN based-LEDs applied to the ITO 10 nm, and MLG/ITO (10 nm) structures showed 2.95 and 3.06 V at 20 mA, and 20.28 and 16.74 mW/sr at 400 mA, respectively. The sheet resistance of the MLG transferred to ITO 5 nm was decreased approximately four fold compared to ITO 5 nm. On the other hand, the ITO 10 nm and MLG/ITO 10 nm showed a similar sheet resistance; the transmittance of the LEDs with ITO 10 nm decreased to 16% due to MLG formation on ITO. This suggests that the relationship between the sheet resistance and transmittance according to the ITO film thickness affected the electro-optical properties of the LEDs with a transparent p-electrode with the MLG/ITO dual structure.

4.
Sci Rep ; 8(1): 571, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330376

ABSTRACT

Since the successful exfoliation of graphene, various methodologies have been developed to identify the number of layers of exfoliated graphene. The optical contrast, Raman G-peak intensity, and 2D-peak line-shape are currently widely used as the first level of inspection for graphene samples. Although the combination analysis of G- and 2D-peaks is powerful for exfoliated graphene samples, its use is limited in chemical vapor deposition (CVD)-grown graphene because CVD-grown graphene consists of various domains with randomly rotated crystallographic axes between layers, which makes the G- and 2D-peaks analysis difficult for use in number identification. We report herein that the Raman Si-peak intensity can be a universal measure for the number identification of multilayered graphene. We synthesized a few-layered graphene via the CVD method and performed Raman spectroscopy. Moreover, we measured the Si-peak intensities from various individual graphene domains and correlated them with the corresponding layer numbers. We then compared the normalized Si-peak intensity of the CVD-grown multilayer graphene with the exfoliated multilayer graphene as a reference and successfully identified the layer number of the CVD-grown graphene. We believe that this Si-peak analysis can be further applied to various 2-dimensional (2D) materials prepared by both exfoliation and chemical growth.

5.
Nanoscale ; 9(47): 18644-18650, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29075708

ABSTRACT

van der Waals (vdW) heterostructures with two-dimensional (2D) crystals such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDCs) allow us to demonstrate atomically thin field-effect transistors (FETs), photodetectors (PDs) and photovoltaic devices capable of higher performance and greater stability levels than conventional devices. Although there have been studies of gas molecule sensing with 2D crystal channels, vdW heterostructures based on 2D crystals have not been employed thus far. Here, utilizing graphene/WS2/graphene (G/WS2/G) vdW heterostructure tunnel FETs, we demonstrate the rectification behavior of the sensitivity signal by tuning the WS2 potential barriers as a function of the gas molecule concentration and devise a fingerprint map of the sensitivity variation corresponding to an individual ratio of two different molecules in a gas mixture. Because the separation of different gas molecule concentrations from gas mixtures is in high demand in the gas-sensing research field, this result will greatly assist in the progress on selective gas sensing.

6.
Nat Mater ; 11(11): 936-41, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23023552

ABSTRACT

The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics. In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour. Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial. Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (<λ/1,000,000), the one-atom-thick layer, in conjunction with the metamaterial, can modulate both the amplitude of the transmitted wave by up to 47% and its phase by 32.2° at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects.

7.
J Nanosci Nanotechnol ; 8(10): 4930-3, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19198365

ABSTRACT

In this paper, we have investigated the phase change memory device with U-shaped bottom electrode using three-dimensional finite element analysis tool. From the simulation, the reset current of PRAM with U-shaped bottom electrode is greatly reduced, compared with the conventional device. And the experimental result clearly shows that the PRAM with U-shaped bottom electrode has 35% smaller RESET current, compared with the conventional PRAM device.

SELECTION OF CITATIONS
SEARCH DETAIL
...