Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 10(12)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34943052

ABSTRACT

Overdose of acetaminophen (APAP) can cause severe liver injury. Although alcohol is considered a risk factor for APAP toxicity, the mechanism underlying the interaction between alcohol and APAP remains unclear. Binge alcohol (5 g/kg every 12 h, 3 doses) reduced the concentration of cysteine and glutathione (GSH) and decreased expression of cystathionine ß-synthase (CßS), cystathionine γ-lyase (CγL), and glutamate cysteine ligase catalytic subunit (GCLC) in the livers of male C57BL/6 mice. Furthermore, the levels of GSH S-transferase (GST) and GSH peroxidase (GPx) were decreased. To evaluate the effect of binge drinking on APAP-induced liver injury, 300 mg APAP was administered following alcohol binges. APAP in the binge group significantly amplified the serum ALT more than two fold and enhanced the pro-apoptotic proteins with a severe centrilobular necrosis compared to APAP alone. APAP treatment after alcohol binges caused lower levels of hepatic cysteine and GSH than APAP alone over 24 h, indicating that alcohol binges reduced GSH regenerating potential. Exposure to APAP after binge treatment significantly increased oxidative stress (lipid peroxidation) and endoplasmic reticulum (ER) stress (Grp78 and ATF6) markers at 6 h after treatment. Notably, the IRE1α/ASK1/MKK4/JNK pathway was activated, whereas CHOP expression was reduced by APAP administration in mice with pre-exposed alcohol binges compared with APAP alone. Thus, pretreatment with binge alcohol decreases GSH-mediated antioxidant capacity and contributes to augmentation of liver injury caused by subsequent APAP administration through differential ER stress signaling pathway.

2.
Small ; 17(20): e2100438, 2021 May.
Article in English | MEDLINE | ID: mdl-33817966

ABSTRACT

The highly selective detection of trace gases using transparent sensors at room temperature remains challenging. Herein, transparent nanopatterned chemiresistors composed of aligned 1D Au-SnO2 nanofibers, which can detect toxic NO2 gas at room temperature under visible light illumination is reported. Ten straight Au-SnO2 nanofibers are patterned on a glass substrate with transparent electrodes assisted by direct-write, near-field electrospinning, whose extremely low coverage of sensing materials (≈0.3%) lead to the high transparency (≈93%) of the sensor. The sensor exhibits a highly selective, sensitive, and reproducible response to sub-ppm levels of NO2 , and its detection limit is as low as 6 ppb. The unique room-temperature NO2 sensing under visible light emanates from the localized surface plasmonic resonance effect of Au nanoparticles, thereby enabling the design of new transparent oxide-based gas sensors without external heaters or light sources. The patterning of nanofibers with extremely low coverage provides a general strategy to design diverse compositions of gas sensors, which can facilitate the development of a wide range of new applications in transparent electronics and smart windows wirelessly connected to the Internet of Things.

SELECTION OF CITATIONS
SEARCH DETAIL
...