Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(18): e2200441, 2022 06.
Article in English | MEDLINE | ID: mdl-35451234

ABSTRACT

To build devices offering users comfortable experience, it is important to focus on form factor and multifunctionality. In this study, for the first time, multifunctional Zn clusters with shape memory, self-healing, triboelectricity, and optical sensing synergized with rollable form factor are designed and fabricated by coordinating COO- and Zn2+ . As pore forming agent, Zn clusters produce hierarchical porous structure depending on Zn amount. Zn clusters are applied as message transmitters and charge containers in optical sensing and corona charge injection, respectively. Moreover, Zn clusters in PVB-COO-Zn serve as positive tribomaterial due to Zn ion doping effect, increasing the output performance as the Zn amount reaches 20 wt%. In addition, injecting positive charge into PVB-COO-Zn 20 lead to more than 24 times increase in output performance compared to those of non-porous structures. The reversibility of Zn clusters endows shape memory and self-healing, synergized with the rollable form factor. The rollability is implemented using the long alkyl chain and the energy absorption of porous structure, providing damage resistance. The advancements in this work provide opportunities for multifunctional and unique applications (shape memory rotating-triboelectric nanogenerator, rollable self-healing touchpad, hidden tag) synergized with rollability that accomplishes working in broadened condition in near future.


Subject(s)
Zinc
2.
Small Methods ; 6(5): e2101545, 2022 May.
Article in English | MEDLINE | ID: mdl-35332708

ABSTRACT

As a method to maximize the energy efficiency of triboelectric nanogenerators (TENGs), high-voltage charge injection (HVCI) on the surface is a simple and effective method for increasing surface charge densities. In this study, positive and negative triboelectric series are controlled using a 3-layer gradient charge-confinement wherein the particle sizes of the mesoporous carbon spheres (mCSs) are sequentially arranged depending on the external surface area of the mCSs. In the gradient charge-confinement layers of this study, the mCS with different sizes perform charge transport from the surface to a deep position during HVCI while mitigating the charge loss through charge confinement to induce the high space charge densities. Through this process, the output voltage-which is initially 15.2 V-is measured to be 600 V after HVCI, thus representing an increase of about 40 times. Further, to amplify the low output current, which is a disadvantage of triboelectric energy, two types of electrical energy-triboelectric and electromagnetic energy-are produced in single mechanical motion. As a result, the output current produced by the cylindrical TENG and electromagnetic generator is recorded as being 1300 times higher, increasing from 12.8 µA to 17.5 mA.

3.
ACS Appl Mater Interfaces ; 13(19): 22926-22934, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33960762

ABSTRACT

Recently, wearable sensors, due to their ability to exhibit characteristics, have been appealing for health monitoring through detection of human motions and vital signals. The development of strain sensors with high sensing performance and wearability has been a great challenge to date. In this study, a textile-based strain sensor with good skin affinity was fabricated through a simple fabrication process of dip-coating 2D triaxial-braided fabrics using carbon ink and then drying. The macro crack aligned on the 2D triaxial-braided fabric with a high-density structure and good recovery force. The sensitivity of textile-based strain sensor can be enhanced due to aligned macro crack formed by prestrained fabricating process and characteristic of the 2D triaxial braided fabric with high dense structure. The optimized sensor exhibits high sensitivity (gauge factor: 128) in a strain range of 0-30%, durability (5000 cycles), washability, low hysteresis, and fast response time (90 ms). Therefore, it can be applied as a wearable sensor that can monitor human motions (large strain) and biosignals (subtle strain).


Subject(s)
Carbon/chemistry , Monitoring, Physiologic/instrumentation , Wearable Electronic Devices , Humans , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL