Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Nutr Metab Cardiovasc Dis ; 25(8): 724-33, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26044516

ABSTRACT

BACKGROUND AND AIMS: This study evaluated the triglyceride (TG)-lowering effects of consuming dual probiotic strains of Lactobacillus curvatus (L. curvatus) HY7601 and Lactobacillus plantarum (L. plantarum) KY1032 on the fasting plasma metabolome. METHODS AND RESULTS: A randomized, double-blind, placebo-controlled study was conducted on 92 participants with hypertriglyceridemia but without diabetes. Over a 12-week testing period, the probiotic group consumed 2 g of powder containing 5 × 10(9) colony-forming units (cfu) of L. curvatus HY7601 and 5 × 10(9) cfu of L. plantarum KY1032 each day, whereas the placebo group consumed the same product without probiotics. Fasting plasma metabolomes were profiled using UPLC-LTQ-Orbitrap MS. After 12 weeks of treatment, the probiotic group displayed a 20% reduction (p = 0.001) in serum TGs and 25% increases (p=0.001) in apolipoprotein A-V (apoA-V). At the 12-week follow-up assessment, the following 11 plasma metabolites were significantly reduced in the probiotic group than the placebo group: palmitoleamide, palmitic amide, oleamide, and lysophosphatidyl choline (lysoPC) containing C14:0, C16:1, C16:0, C17:0, C18:3, C18:2, C18:1, and C20:3. In the probiotic group, changes (▵) in TG were negatively correlated with ▵ apoA-V, which was positively correlated with ▵ FFA. In addition, ▵ FFA was strongly and positively correlated with ▵ lysoPCs in the probiotic group but not the placebo group. CONCLUSIONS: The triglyceride-lowering effects of probiotic supplementation, partly through elevated apoA-V, in borderline to moderate hypertriglyceridemic subjects showed reductions in plasma metabolites, fatty acid primary amides and lysoPCs (NCT02215694; http://www.clinicaltrials.gov). Clinical trials: NCT02215694; http://www.clinicaltrials.gov.


Subject(s)
Hypertriglyceridemia/blood , Hypertriglyceridemia/diet therapy , Lactobacillus plantarum/classification , Lysophosphatidylcholines/blood , Probiotics/pharmacology , Adult , Aged , Apolipoprotein A-V , Apolipoproteins A/blood , Dietary Supplements , Double-Blind Method , Fasting/blood , Fatty Acids/blood , Female , Follow-Up Studies , Humans , Male , Middle Aged , Probiotics/administration & dosage , Treatment Outcome , Triglycerides/blood
2.
J Appl Microbiol ; 117(3): 834-45, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24925305

ABSTRACT

AIMS: The aim of this study was to evaluate the effects of Bifidobacterium lactis HY8101 on insulin resistance induced using tumour necrosis factor-α (TNF-α) in rat L6 skeletal muscle cells and on the KK-A(Y) mouse noninsulin-dependent diabetes mellitus (NIDDM) model. METHODS AND RESULTS: The treatment using HY8101 improved the insulin-stimulated glucose uptake and translocation of GLUT4 via the insulin signalling pathways AKT and IRS-1(Tyr) in TNF-α-treated L6 cells. HY8101 increased the mRNA levels of GLUT4 and several insulin sensitivity-related genes (PPAR-γ) in TNF-α-treated L6 cells. In KK-A(Y) mice, HY8101 decreased fasting insulin and blood glucose and significantly improved insulin tolerance. HY8101 improved diabetes-induced plasma total cholesterol and triglyceride (TG) levels and increased the muscle glycogen content. We observed concurrent transcriptional changes in the skeletal muscle tissue and the liver. In the skeletal muscle tissue, the glycogen synthesis-related gene pp-1 and GLUT4 were up-regulated in mice receiving HY8101 treatment. In the liver, the hepatic gluconeogenesis-regulated genes (PCK1 and G6PC) were down-regulated in mice receiving HY8101 treatment. CONCLUSIONS: Bifidobacterium lactis HY8101 can be used to moderate glucose metabolism, lipid metabolism and insulin sensitivity in mice and in cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Bifidobacterium lactis HY8101 might have potential as a probiotic candidate for alleviating metabolic syndromes such as diabetes.


Subject(s)
Bifidobacterium , Diabetes Mellitus, Type 2/therapy , Insulin Resistance , Probiotics/therapeutic use , Animals , Blood Glucose/analysis , Cell Line , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Glycogen/metabolism , Insulin/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Rats , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology
3.
J Food Sci ; 72(7): S443-9, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17995656

ABSTRACT

Indirectly puffed snacks were produced by an extrusion process with partially defatted (12% fat) peanut flour (30%, 40%, 50%) at different levels of screw speed (200, 300, 400 rpm) and feed rate (4, 5, 6 kg/h). Extrudates were dried to obtain half-products (11% to 12% MC) followed by puffing with deep-fat frying. The puffed snack prototypes were subjected to consumer acceptance test. Consumers rated higher than 6.0 (= like slightly) for all products produced within the experimental factor ranges on the attributes of crispness and texture, whereas consumer scores for appearance, color, flavor, and overall liking were lower than 6.0 for the product containing 50% peanut flour regardless of screw speed and feed rate. The product extruded with 50% peanut flour at screw speed of 400 rpm and feed rate of 6 kg/h received the lowest score of 5.5 on overall liking in a 9-point hedonic score. Predicted regression models indicated that feed rate had the largest effect on consumer attributes followed by peanut flour and screw speed. From the superimposed contour plot of individual contour plot of consumer attributes, the optimum region was identified as the area beginning at the 42.0% to 43.0% peanut flour and 4.0 kg/h feed rates, rising to a maximum at 45% peanut flour and 4.6 kg/h feed rates and decreasing to the 33.0% to 34.0% peanut flour and 6.0 kg/h feed rates. Verification confirmed the ability of predictive regression models to identify peanut-based snacks, which would be scored higher than 6.0 by consumer evaluation.


Subject(s)
Arachis , Food Handling/methods , Food Technology , Oryza , Taste , Adolescent , Adult , Aged , Arachis/chemistry , Commerce , Consumer Behavior , Cross-Over Studies , Female , Flour/analysis , Food Preferences , Humans , Male , Middle Aged , Oryza/chemistry , Regression Analysis
4.
Biosci Biotechnol Biochem ; 64(12): 2530-7, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11210113

ABSTRACT

The alpha-glucuronidase gene of Bacillus stearothermophilus No. 236 was cloned, sequenced, and expressed in Escherichia coli. The gene, designated aguA, encoded a 691-residue polypeptide with calculated molecular weight of 78,156 and pI of 5.34. The alpha-glucuronidase produced by a recombinant E. coli strain containing the aguA gene was purified to apparent homogeneity and characterized. The molecular weight of the alpha-glucuronidase was 77,000 by SDS-PAGE and 161,000 by gel filtration; the functional form of the alpha-glucuronidase therefore was dimeric. The optimal pH and temperature for the enzyme activity were pH 6.5 and 40 degrees C, respectively. The enzyme's half-life at 50 degrees C was 50 min. The values for the kinetic parameters of Km and Vmax were 0.78 mM and 15.3 U/mg for aldotriouronic acid [2-O-alpha-(4-O-methyl-alpha-D-glucopyranosyluronic)-D-xylobiose]. The alpha-glucuronidase acted mainly on small substituted xylo-oligomers and did not release methylglucuronic acid from intact xylan. Nevertheless, synergism in the release of xylose from xylan was found when alpha-glucuronidase was added to a mixture of endoxylanase and beta-xylosidase.


Subject(s)
Geobacillus stearothermophilus/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Escherichia coli/genetics , Geobacillus stearothermophilus/enzymology , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Analysis , Sequence Homology, Amino Acid , Substrate Specificity , Trisaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...