Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 116(3): 804-822, 2023 11.
Article in English | MEDLINE | ID: mdl-37522556

ABSTRACT

Vegetative shade causes an array of morphological changes in plants called shade avoidance syndrome, which includes hypocotyl and petiole elongation, leaf hyponasty, reduced leaf growth, early flowering and rapid senescence. Here, we show that loss-of-function mutations in HISTONE DEACETYLASE 9 (HDA9) attenuated the shade-induced hypocotyl elongation in Arabidopsis. However, the hda9 cotyledons and petioles under shade were not significantly different from those in wild-type, suggesting a specific function of HDA9 in hypocotyl elongation in response to shade. HDA9 expression levels were stable under shade and its protein was ubiquitously detected in cotyledon, hypocotyl and root. Organ-specific transcriptome analysis unraveled that shade induced a set of auxin-responsive genes, such as SMALL AUXIN UPREGULATED RNAs (SAURs) and AUXIN/INDOLE-3-ACETIC ACIDs (AUX/IAAs) and their induction was impaired in hda9-1 hypocotyls. In addition, HDA9 binding to loci of SAUR15/65, IAA5/6/19 and ACS4 was increased under shade. The genetic and organ-specific gene expression analyses further revealed that HDA9 may cooperate with PHYTOCHROME-INTERACTING FACTOR 4/7 in the regulation of shade-induced hypocotyl elongation. Furthermore, HDA9 and PIF7 proteins were found to interact together and thus it is suggested that PIF7 may recruit HDA9 to regulate the shade/auxin responsive genes in response to shade. Overall, our study unravels that HDA9 can work as one component of a hypocotyl-specific transcriptional regulatory machinery that activates the auxin response at the hypocotyl leading to the elongation of this organ under shade.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hypocotyl , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Gene Expression Regulation, Plant , Light , DNA-Binding Proteins/genetics
2.
J Exp Bot ; 74(12): 3560-3578, 2023 06 27.
Article in English | MEDLINE | ID: mdl-36882154

ABSTRACT

Plants respond to vegetative shade with developmental and physiological changes that are collectively known as shade avoidance syndrome (SAS). Although LONG HYPOCOTYL IN FAR-RED 1 (HFR1) is known to be a negative regulator of SAS by forming heterodimers with other basic helix-loop-helix (bHLH) transcription factors to inhibit them, its function in genome-wide transcriptional regulation has not been fully elucidated. Here, we performed RNA-sequencing analyses of Arabidopsis thaliana hfr1-5 mutant and HFR1 overexpression line [HFR1(ΔN)-OE] to comprehensively identify HFR1-regulated genes at different time points of shade treatment. We found that HFR1 mediates the trade-off between shade-induced growth and shade-repressed defence, by regulating the expression of relevant genes in the shade. Genes involved in promoting growth, such as auxin biosynthesis, transport, signalling and response were induced by shade but suppressed by HFR1 under both short and long durations of shade. Likewise, most ethylene-related genes were shade-induced and HFR1-repressed. However, shade suppressed defence-related genes, while HFR1 induced their expression, especially under long durations of shade treatment. We demonstrated that HFR1 confers increased resistance to bacterial infection under shade.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hypocotyl , Nuclear Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...