Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 105(5): 3926-3938, 2022 May.
Article in English | MEDLINE | ID: mdl-35307175

ABSTRACT

Sensory and physical properties of 2 lemon-flavored beverages with 5% and 7.5% wt/wt nonfat dry milk (NFDM) at pH 2.5 were studied during storage. The 2 beverages had similar volatile compounds, but the 5% NFDM had higher aroma and lemon flavor, with a preferred appearance by consumers due to the lower turbidity and viscosity. After 28 d of storage at 4°C, lemon flavor decreased in the 5% NFDM beverage but was still more intense than the 7.5% one. During 70 d of storage, no microorganisms were detected, and the beverages were more stable when stored at 4°C than at room temperature according to changes of physical properties measured for appearance, turbidity, color, particle size, zeta potential, rheological properties, and transmission electron microscopy morphology. Findings of the present study suggest that NFDM may be used at 5% wt/wt to produce stable acidic dairy beverages with low turbidity when stored at 4°C.


Subject(s)
Beverages , Milk , Animals , Beverages/analysis , Milk/chemistry , Odorants , Particle Size , Viscosity
2.
Int J Biol Macromol ; 194: 982-992, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34852260

ABSTRACT

Resveratrol (RSV) is a lipophilic polyphenol susceptible to photo- and thermal degradation, and strategies are to be studied to enable its distribution in food matrices, prevent its degradation during storage, and increase its bioaccessibility during digestion. In this study, the porous matrix of natural starch, in the form of milled freeze-dried potato microparticles (FDPMs), was studied as an absorbent to load RSV. The binary solvent of ethanol and polyethylene glycol 400 (40:60 v/v) was used to dissolve 30% w/v RSV for diffusion into FDPMs. After ethanol was evaporated, the loading capacity was 112 mg RSV/g FDPMs and was maintained at 104 mg RSV/g FDPMs (92.9% retention) after 110-day ambient storage. The RSV stability under UV irradiation at 253 nm was improved by 32% due to shielding effect of FDPMs, and the ferric reducing power was 25% higher than the pristine RSV. The release of RSV in FDPMs was significantly higher than pristine RSV during simulated gastric and intestinal digestions (82.3% vs 51.4% bioaccessibility). The increased reducing power and bioaccessibility were supported by the amorphous state of RSV in FDPMs. The present study illustrates the potential of porous vegetable microparticles as natural matrices to load lipophilic bioactive compounds in functional foods.


Subject(s)
Microspheres , Resveratrol/chemistry , Resveratrol/pharmacology , Starch/chemistry , Biopolymers/chemistry , Chemical Phenomena , Diffusion , Drug Carriers , Drug Stability , Porosity , Solanum tuberosum , Spectrum Analysis , Thermodynamics
3.
Food Chem ; 374: 131625, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34823941

ABSTRACT

Curcumin (CCM) and quercetin (QCT) are natural antioxidants. In this study, the two antioxidants (5:1 w/w) were loaded into freeze-dried mushroom microparticles (FDMMs) to achieve synergistic antioxidative effect, and CCM-QCT-loaded FDMMs were incorporated in cooked beef patties to inhibit lipid oxidation. The loading was done by diffusing CCM-QCT dissolved in ethanol and polyethylene glycol-400 (40:60 v/v) into FDMMs. The loading capacity was 4.3% and 1.3% (w/w) for CCM and QCT, respectively. Crystalline CCM and QCT became amorphous within FDMMs according to X-ray diffraction and scanning electron microscopy. Confocal laser scanning microscopy confirmed the diffusion of CCM and QCT into the intracellular matrix of FDMMs. Both CCM and QCT were effectively preserved within FDMMs during UV irradiation at 253 nm. The minimum 2-thiobarbituric acid reactive values were observed for the patties with CCM-QCT-loaded FDMMs. Our results demonstrate the potential of porous mushroom matrices for loading lipophilic antioxidants to improve food quality.


Subject(s)
Agaricales , Curcumin , Animals , Antioxidants , Cattle , Lipids , Quercetin
4.
Food Chem ; 344: 128639, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33229152

ABSTRACT

Clear acidic protein beverages have a niche market. Acidification of skim milk powder (SMP) dispersions to pH 3.0 using citric acid (CA) lowers turbidity but the dispersion remains translucent. The present study aimed at comparing physicochemical properties of 5% w/v SMP dispersions acidified to pH 3.0 using chelating gluconic acid (GA) and CA and non-chelating hydrochloric acid. GA was the most effective in reducing the dispersion turbidity to 394 NTU at pH 3.0, which was further reduced to 248 NTU after heating at 90 °C for 2 min resulting in transparent dispersions. The better chelating ability of GA than CA was supported by the higher extent of dissolved CCP in serum phase. The aggregation of dissociated caseins was not observed for the GA treatment based on transmission electron microscopy. The findings from this study may be used to produce clear casein-based protein beverages.


Subject(s)
Chelating Agents/chemistry , Gluconates/chemistry , Milk/chemistry , Powders/chemistry , Animals , Calcium/analysis , Caseins/chemistry , Citric Acid/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Micelles , Microscopy, Electron, Transmission , Particle Size , Phosphorus/analysis
5.
J Dairy Sci ; 103(11): 9868-9880, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32861487

ABSTRACT

Due to health benefits of proteins, the demand for protein beverages has grown rapidly. Translucent protein drinks with neutral pH may have advantages over acidic beverages that may cause dental erosion, and skim milk powder (SMP) is an affordable protein ingredient. Dissociating casein micelles by calcium chelators is a well-known method to reduce SMP dispersion turbidity, but much is to be studied for physicochemical properties as affected by chelator type and concentration. The objective of the present study was to characterize physicochemical properties of dispersions with 5% (wt/vol) SMP after addition of 0 to 30 mM sodium tripolyphosphate, trisodium citrate, or sodium hexametaphosphate. The turbidity was decreased with increasing chelator concentration, with the lowest turbidity observed in the SMP dispersions with sodium hexametaphosphate. The smallest hydrodynamic diameter was observed at an intermediate chelator concentration, resulting from the balance of casein micelle dissociation and aggregation of dissociated caseins induced at an elevated ionic strength. Heating at 90°C for 5 min increased turbidity but lowered hydrodynamic diameter of SMP dispersions, with some exceptions. The morphology of SMP dispersions differed for each chelator and was also affected by chelator concentration and heating. Trisodium citrate was the most effective to demineralize colloidal calcium phosphate in casein micelles, but the amount of dissolved calcium was not directly correlated with the decreased turbidity, indicating different chelating mechanisms by each chelator. Analysis of serum calcium and phosphorus concentrations also suggested that the type and concentration of soluble and insoluble calcium phosphates and their partitioning in the serum and casein micelles were dynamically changed by the studied parameters to affect dispersion turbidity and structures of casein micelles. Findings from the present study may be used to formulate translucent beverages incorporating SMP and other casein micelle ingredients.


Subject(s)
Citrates/chemistry , Milk/chemistry , Phosphates/chemistry , Polyphosphates/chemistry , Animals , Calcium/analysis , Calcium Phosphates , Caseins/chemistry , Chelating Agents/analysis , Chelating Agents/pharmacology , Micelles , Powders/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...