Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Am J Pathol ; 193(12): 2047-2065, 2023 12.
Article in English | MEDLINE | ID: mdl-37741453

ABSTRACT

Toxoplasma gondii infection in pregnant women may cause fetal anomalies; however, the underlying mechanisms remain unclear. The current study investigated whether T. gondii induces pyroptosis in human placental cells and the underlying mechanisms. Human placental trophoblast (BeWo and HTR-8/SVneo) and amniotic (WISH) cells were infected with T. gondii, and then reactive oxygen species (ROS) production, cathepsin B (CatB) release, inflammasome activation, and pyroptosis induction were evaluated. The molecular mechanisms of these effects were investigated by treating the cells with ROS scavengers, a CatB inhibitor, or inflammasome-specific siRNA. T. gondii infection induced ROS generation and CatB release into the cytosol in placental cells but decreased mitochondrial membrane potential. T. gondii-infected human placental cells and villi exhibited NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation and subsequent pyroptosis induction, as evidenced by increased expression of ASC, cleaved caspase-1, and mature IL-1ß and gasdermin D cleavage. In addition to inflammasome activation and pyroptosis induction, adverse pregnancy outcome was shown in a T. gondii-infected pregnant mouse model. Administration of ROS scavengers, CatB inhibitor, or inflammasome-specific siRNA into T. gondii-infected cells reversed these effects. Collectively, these findings show that T. gondii induces NLRP1/NLRP3/NLRC4/AIM2 inflammasome-dependent caspase-1-mediated pyroptosis via induction of ROS production and CatB activation in placental cells. This mechanism may play an important role in inducing cell injury in congenital toxoplasmosis.


Subject(s)
Inflammasomes , Toxoplasma , Mice , Animals , Humans , Female , Pregnancy , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Pyroptosis , Trophoblasts/metabolism , Cathepsin B/metabolism , Cathepsin B/pharmacology , Placenta/metabolism , RNA, Small Interfering , Caspases/metabolism , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , NLR Proteins/metabolism
2.
Food Funct ; 14(18): 8396-8408, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37614189

ABSTRACT

Diabetes mellitus leads to chronic complications, such as nephropathy. Diabetic complications are closely related to advanced glycation end products (AGEs). Excessive formation and accumulation of AGEs in diabetic renal diseases lead to excessive oxidative stress, resulting in chronic renal failure. The leaves of Hippophae rhamnoides L. (sea buckthorn leaves; SBL) show biological benefits, including antioxidant effects. This study aimed to evaluate the effect of SBL on kidney damage in db/db mice. The SBL extract was orally administered at 100 and 200 mg kg-1 for 12 weeks to db/db mice. Histological changes and the urine albumin/creatinine ratio were relieved, and the accumulation of AGEs in kidney glomeruli decreased following SBL treatment. Moreover, the SBL extract reduced the expression of AGEs, the receptor for AGEs, and NADPH oxidase 4, but upregulated glyoxalase 1 in the diabetic renal tissue. Urinary excretion levels and expression of 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative stress decreased after SBL treatment in the renal tissue. Furthermore, SBL attenuated oxidative stress in diabetic kidneys by reducing AGE accumulation, thereby ameliorating renal damage. Therefore, from these results, we infer that the SBL extract can act as a potential therapeutic agent for diabetic renal complications caused by AGEs.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Hippophae , Animals , Mice , Diabetic Nephropathies/drug therapy , Oxidative Stress , 8-Hydroxy-2'-Deoxyguanosine , Mice, Inbred Strains , Glycation End Products, Advanced , Plant Extracts
3.
Heliyon ; 9(8): e18889, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576314

ABSTRACT

This study was performed to investigate the effects of an herb extract mixture (HM) in ameliorating non-alcoholic fatty liver disease (NAFLD). The HM contained equal amounts of 70% ethanol extracts from Zingiber officinale, Centella asiatica, and Boehmeria nivea. In vitro, the HM significantly inhibited lipid accumulation in oleic acid-stimulated HepG2 cells. We further evaluated the anti-NAFLD activities of the HM in vivo in an animal model. Rats were fed two different amounts of the HM (50 and 200 mg/kg body weight) along with a high-fat diet for 6 weeks. HM supplementation reduced liver weight; epididymal, peri-renal, and intra-abdominal fat content; and serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels as well as increased high-density lipoprotein cholesterol levels in a dose-dependent manner. Histological evaluation of liver specimens further demonstrated that administration of HM significantly prevented hepatic lipid accumulation and subsequent development of hepatic steatosis. These findings suggest that HM can be used as an alternative nutraceutical for ameliorating NAFLD.

4.
Front Pharmacol ; 14: 1176073, 2023.
Article in English | MEDLINE | ID: mdl-37351505

ABSTRACT

The purpose of this study was to illuminate the mechanism by which Schizonepeta tenuifolia Briq. (ST) ethanolic extract prevents skin photoaging in HR-1 hairless mice (HR-1). The ST ethanolic extract alleviated wrinkle formation, epidermal skin thickness, and collagen degradation in skin tissues of ultraviolet B (UVB)-irradiated HR-1 mice. Expression of matrix metalloproteinases (a wrinkle-related marker) was reduced, and tissue inhibitor of metalloproteinase 1 expression was upregulated following application of ST ethanolic extract. Furthermore, skin dehydration and levels of hyaluronidase-1 and -2 (enzymes that break hyaluronic acid) were decreased. Moreover, protein expression of hyaluronan synthases (markers of skin hydration) and hyaluronic acid levels increased following ST ethanolic extract treatment in UVB-induced photoaging HR-1 mice. In addition, the phosphorylation of mitogen-activated protein kinases (MAPKs), including p38, extracellular signal-regulated kinase, and Jun N-terminal kinase was suppressed, and expression of nuclear factor-kappa was reduced. Treatment with ST ethanolic extract also reduced advanced glycation end product (AGE) accumulation and expression of the receptor for AGE (RAGE) in skin tissue. These results suggest that ST ethanolic extract moderates skin damage caused by UVB irradiation via regulating the expression of wrinkle- and hydration-related proteins, MAPKs, and RAGE.

5.
Antioxidants (Basel) ; 12(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36978839

ABSTRACT

The formation of advanced glycation end products (AGE) is linked to the pathogenesis of diabetic nephropathy. The aim of this work was to assess the therapeutic potential and underlying mechanism of action of dieckol (DK), isolated from Ecklonia cava, on renal damage induced by methylglyoxal (MGO) in mouse glomerular mesangial cells. The antiglycation properties of DK were evaluated using ELISA. We conducted molecular docking, immunofluorescence analysis, and Western blotting to confirm the mechanism by which DK prevents AGE-related diabetic nephropathy. DK treatment exhibited antiglycation properties through the inhibition of AGE production, inhibition of cross-linking between AGE and collagen, and breaking of its cross-linking. DK pretreatment exhibited protective effects on renal cells by suppressing MGO-induced intracellular reactive oxygen species (ROS) formation, intracellular MGO and AGE accumulation, activation of the apoptosis cascade and apoptosis-related protein expression, activation of receptor for AGE (RAGE) protein expression, and suppression of the glyoxalase system. Furthermore, DK exhibited a stronger binding affinity for RAGE than AGE, which was confirmed as exerting a competitive inhibitory effect on the AGE-RAGE interaction. These results demonstrated that DK is a potential natural AGE inhibitor that can be utilized to prevent and treat AGE-induced diabetic nephropathy.

6.
Biochem Biophys Res Commun ; 650: 132-136, 2023 04 02.
Article in English | MEDLINE | ID: mdl-36796223

ABSTRACT

Keratins are key structural proteins found in skin and other epithelial tissues. Keratins also protect epithelial cells from damage or stress. Fifty-four human keratins were identified and classified into two families, type I and type II. Accumulating studies showed that keratin expression is highly tissue-specific and used as a diagnostic marker for human diseases. Notably, keratin 79 (KRT79) is type II cytokeratin that was identified as regulator of hair canal morphogenesis and regeneration in skin, but its role in liver remains unclear. KRT79 is undetectable in normal mouse but its expression is significantly increased by the PPARA agonist WY-14643 and fenofibrate, and completely abolished in Ppara-null mice. The Krt79 gene has functional PPARA binding element between exon 1 and exon 2. Hepatic Krt79 is regulated by HNF4A and HER2. Moreover, hepatic KRT79 is also significantly elevated by fasting- and high-fat diet-induced stress, and these increases are completely abolished in Ppara-null mice. These findings suggest that hepatic KRT79 is controlled by PPARA and is highly associated with liver damage. Thus, KRT79 may be considered as a diagnostic marker for human liver diseases.


Subject(s)
Liver Diseases , Liver , Humans , Mice , Animals , Liver/metabolism , Keratins/metabolism , Liver Diseases/metabolism , Hair/metabolism , Fasting/metabolism , Mice, Knockout
7.
Food Funct ; 14(1): 292-304, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36504043

ABSTRACT

Patients with obesity mostly have metabolic syndrome and this can lead to multiple health problems. In the present study, we evaluated the anti-obesity effect of water-soluble red pepper (Capsicum annuum L.) leaf extract (PLE) on 3T3-L1 adipocytes and high-fat diet (HFD)-fed mice. The adipocyte lipid content was determined using Oil Red O staining, which revealed that 100 µg mL-1 PLE markedly reduced fat accumulation without affecting the cell viability. PLE exhibited high prebiotic activity scores by modulating probiotic strains, contributing to host health improvement. In vivo investigation in HFD-fed mice revealed that PLE supplementation significantly decreased the HFD-induced increases in the body weight, amount of white adipose tissue, and serum triglyceride, total cholesterol, leptin, and insulin levels. Consistent with its effects on reduced lipid droplet formation in the liver, PLE supplementation suppressed the expression of lipid synthesis-related proteins including SREBP-1, FAS, and PPAR-γ in the liver and increased that of PGC-1α, CPT1, and adiponectin in epididymal WAT. PLE treatment improved intestinal barrier function and inflammation and reduced harmful intestinal enzyme activities in the feces. Collectively, these results indicate that PLE inhibits fat accumulation in HFD-fed mice via the suppression of adipogenesis and lipogenesis, suggesting its potential in preventing obesity.


Subject(s)
Anti-Obesity Agents , Capsicum , Animals , Mice , 3T3-L1 Cells , Adipogenesis , Anti-Obesity Agents/pharmacology , Diet, High-Fat , Lipids/pharmacology , Mice, Inbred C57BL , Obesity/metabolism , Plant Extracts/pharmacology , PPAR gamma/genetics , PPAR gamma/metabolism
8.
Curr Issues Mol Biol ; 44(9): 4216-4228, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36135201

ABSTRACT

Theobromine is mainly found in plant foods, such as tea; the primary source of theobromine is the seeds of the Theobroma cacao tree. Theobromine is an alkaloid belonging to the methylxanthine class of drugs, and it is similar to theophylline and caffeine. Theobromine is known for its efficacy and role in health and disorder prevention. We evaluated the effects of theobromine on macrophage function, including the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB). Theobromine significantly stimulated the production of nitric oxide (NO) and prostaglandin E2 through immune responses, which relate to the increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, theobromine increased the production of inflammatory cytokines, including tumor necrosis factor-α and interleukin-6 in macrophages. Additionally, theobromine induced the translocation and activity of NF-κB in a concentration-dependent manner. Consistent with these results, the phosphorylation level of MAPKs was increased in theobromine-stimulated macrophages. Collectively, these data revealed that theobromine acts as an immune response stimulator via the NF-κB and MAPKs signaling pathways. Thus, theobromine might have protective effects against inflammatory disorders.

9.
PLoS One ; 17(7): e0270249, 2022.
Article in English | MEDLINE | ID: mdl-35788200

ABSTRACT

Atherosclerosis is a chronic inflammatory disease that contributes to disease progression is associated with the expression of adhesion molecules in vascular smooth muscle cells (VSMCs). Glycolaldehyde (GA) has been shown to impair cellular function in various disorders, including diabetes, and renal diseases. This study investigated the effect of GA on the expression of adhesion molecules in the mouse VSMC line, MOVAS-1. Co-incubation of VSMCs with GA (25-50 µM) dose-dependently increased the protein and mRNA level of Vcam-1 and ICAM-1. Additionally, GA upregulated intracellular ROS production and phosphorylation of MAPK and NK-κB. GA also elevated TNF-α-induced PI3K-AKT activation. Furthermore, GA enhanced TNF-α-activated IκBα kinase activation, subsequent IκBα degradation, and nuclear translocation of NF-κB. These findings suggest that GA stumulated VSMC adhesive capacity and the induction of VCAM-1 and ICAM-1 in VSMCs through inhibition of MAPK and NF-κB signaling pathways, providing insights into the effect of GA to induce inflammation within atherosclerotic lesions.


Subject(s)
Muscle, Smooth, Vascular , Tumor Necrosis Factor-alpha , Acetaldehyde/analogs & derivatives , Animals , Cell Adhesion Molecules/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
10.
J Nutr Biochem ; 103: 108954, 2022 05.
Article in English | MEDLINE | ID: mdl-35121021

ABSTRACT

Obesity is a global health issue associated with increased prevalence of disease and mortality. Molokhia (Corchorus olitorius L.) leaves, used as vegetables in Asia and Africa, comprise abundant water-soluble mucilage polysaccharides. The present study aimed to evaluate the effects of molokhia leaf polysaccharide fraction (MPF) on high-fat diet (HFD)-induced obesity and gut dysbiosis in mice. A significant decrease was observed in the body weight, adipocyte size, triglyceride serum, and low-density lipoprotein cholesterol levels, as well as in the expression of lipid synthesis-related proteins in mice treated with 4 mg/kg of MPF (MPF4). Moreover, the expression of the tight junction protein increased significantly; however, gut permeability and related inflammatory marker levels decreased in the MPF4 group. Furthermore, MPF ameliorated gut dysbiosis, whereas the MPF4 group presented a decreased Firmicutes to Bacteroidetes ratios and an increased abundance of Akkermansia during exposure to HFD. Our findings reveal that rhamnogalacturonan-Ⅰ rich MPF attenuates obesity in mice subjected to HFD by modulating the gut microbiota.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Animals , Diet, High-Fat/adverse effects , Dietary Carbohydrates , Dysbiosis/metabolism , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Polysaccharides/pharmacology
11.
Parasit Vectors ; 14(1): 603, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895315

ABSTRACT

BACKGROUND: Trichomonas vaginalis causes lesions on the cervicovaginal mucosa in women; however, its pathogenesis remains unclear. We have investigated the involvement of the endoplasmic reticulum (ER) in the induction of apoptosis by T. vaginalis and its molecular mechanisms in human cervical cancer SiHa cells. METHODS: Apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), ER stress response and Bcl-2 family protein expression were evaluated using immunocytochemistry, flow cytometry, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide dye staining and western blotting. RESULTS: Trichomonas vaginalis induced mitochondrial ROS production, apoptosis, the ER stress response and mitochondrial dysfunction, such as MMP depolarization and an imbalance in Bcl-2 family proteins, in SiHa cells in a parasite burden- and infection time-dependent manner. Pretreatment with N-acetyl cysteine (ROS scavenger) or 4-phenylbutyric acid (4-PBA; ER stress inhibitor) significantly alleviated apoptosis, mitochondrial ROS production, mitochondrial dysfunction and ER stress response in a dose-dependent manner. In addition, T. vaginalis induced the phosphorylation of apoptosis signal regulating kinase 1 (ASK1) and c-Jun N-terminal kinases (JNK) in SiHa cells, whereas 4-PBA or SP600125 (JNK inhibitor) pretreatment significantly attenuated ASK1/JNK phosphorylation, mitochondrial dysfunction, apoptosis and ER stress response in SiHa cells, in a dose-dependent manner. Furthermore, T. vaginalis excretory/secretory products also induced mitochondrial ROS production, apoptosis and the ER stress response in SiHa cells, in a time-dependent manner. CONCLUSIONS: Trichomonas vaginalis induces apoptosis through mitochondrial ROS and ER stress responses, and also promotes ER stress-mediated mitochondrial apoptosis via the IRE1/ASK1/JNK/Bcl-2 family protein pathways in SiHa cells. These data suggest that T. vaginalis-induced apoptosis is affected by ROS and ER stress response via ER-mitochondria crosstalk.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Trichomonas vaginalis/physiology , Uterine Cervical Neoplasms/parasitology , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Female , Humans , Membrane Potential, Mitochondrial , Mitochondria/metabolism
12.
Antioxidants (Basel) ; 10(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34573117

ABSTRACT

The glyoxal-lysine dimer (GOLD), which is a glyoxal (GO)-derived advanced glycation end product (AGE), is produced by the glycation reaction. In this study, we evaluated the effect of GOLD on the oxidative damage and inflammatory response in SV40 MES 13 mesangial cells. GOLD significantly increased the linkage with the V-type immunoglobulin domain of RAGE, a specific receptor of AGE. We found that GOLD treatment increased RAGE expression and reactive oxygen species (ROS) production in mesangial cells. GOLD remarkably regulated the protein and mRNA expression of nuclear factor erythroid 2-related factor 2 (NRF2) and glyoxalase 1 (GLO1). In addition, mitochondrial deterioration and inflammation occurred via GOLD-induced oxidative stress in mesangial cells. GOLD regulated the mitogen-activated protein kinase (MAPK) and the release of proinflammatory cytokines associated with the inflammatory mechanism of mesangial cells. Furthermore, oxidative stress and inflammatory responses triggered by GOLD were suppressed through RAGE inhibition using RAGE siRNA. These results demonstrate that the interaction of GOLD and RAGE plays an important role in the function of mesangial cells.

13.
J Cell Mol Med ; 25(19): 9460-9472, 2021 10.
Article in English | MEDLINE | ID: mdl-34464509

ABSTRACT

Fas-associated factor 1 (FAF1) has gained a reputation as a member of the FAS death-inducing signalling complex. However, the role of FAF1 in the immunity response is not fully understood. Here, we report that, in the human retinal pigment epithelial (RPE) cell line ARPE-19 cells, FAF1 expression level was downregulated by Toxoplasma gondii infection, and PI3K/AKT inhibitors reversed T. gondii-induced FAF1 downregulation. In silico analysis for the FAF1 promoter sequence showed the presence of a FOXO response element (FRE), which is a conserved binding site for FOXO1 transcription factor. In accordance with the finding, FOXO1 overexpression potentiated, whereas FOXO1 depletion inhibited intracellular FAF1 expression level. We also found that FAF1 downregulation by T. gondii is correlated with enhanced IRF3 transcription activity. Inhibition of PI3K/AKT pathway with specific inhibitors had no effect on the level of T. gondii-induced IRF3 phosphorylation but blocked IRF3 nuclear import and ISGs transcription. These results suggest that T. gondii can downregulate host FAF1 in PI3K/AKT/FOXO1-dependent manner, and the event is essential for IRF3 nuclear translocation to active the transcription of ISGs and thereby T. gondii proliferation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Gene Expression Regulation , Host-Parasite Interactions/genetics , Interferon Regulatory Factor-3/metabolism , Toxoplasma/physiology , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Forkhead Box Protein O1/metabolism , Humans , Interferon Regulatory Factor-3/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Toxoplasmosis/genetics , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology
14.
Biomedicines ; 9(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067529

ABSTRACT

A stilbene glycoside (resvebassianol A) (1) with a unique sugar unit, 4-O-methyl-D-glucopyranose, was identified through biotransformation of resveratrol (RSV) by the entomopathogenic fungus Beauveria bassiana to obtain a superior RSV metabolite with enhanced safety. Its structure, including its absolute configurations, was determined using spectroscopic data, HRESIMS, and chemical reactions. Microarray analysis showed that the expression levels of filaggrin, HAS2-AS1, and CERS3 were higher, while those of IL23A, IL1A, and CXCL8 were lower in the resvebassianol A-treated group than in the RSV-treated group, as confirmed by qRT-PCR. Compound 1 exhibited the same regenerative and anti-inflammatory effects as RSV with no cytotoxicity in skin keratinocytes and TNF-α/IFN-γ-stimulated HIEC-6 cells, suggesting that compound 1 is a safe and stable methylglycosylated RSV. Our findings suggest that our biotransformation method can be an efficient biosynthetic platform for producing a broad range of natural glycosides with enhanced safety.

15.
Antioxidants (Basel) ; 10(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466809

ABSTRACT

Oxidative stress, caused by the excessive production of reactive oxygen species (ROS), results in cellular damage. Therefore, functional materials with antioxidant properties are necessary to maintain redox balance. Turmeric leaves (Curcuma longa L. leaves; TL) are known to have antioxidant properties, including 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and Hydrogen peroxide (H2O2) radical scavenging activity in several studies. The antioxidant effects of TL come from distinct bioactive compounds, such as curcumin, total phenolic compounds, and flavonoids. Therefore, in this study, the antioxidant effects of a water extract of TL (TLE) against H2O2 treatment were assessed in vitro Vero cells and in vivo zebrafish models. The intracellular ROS generation and the proportion of sub-G1 phase cells were evaluated in H2O2- or/and TLE-treated Vero cells to measure the antioxidant activity of TLE. TLE showed outstanding intracellular ROS scavenging activity and significantly decreased the proportion of cells in the sub-G1 phase in a dose-dependent manner. Furthermore, cell death, ROS generation, and lipid peroxidation in the H2O2-treated zebrafish model were attenuated as a consequence of TLE treatment. Collectively, the results from this study suggested that TLE may be an alternative material to relieve ROS generation through its antioxidant properties or a suitable material for the application in a functional food industry.

16.
Microorganisms ; 8(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066000

ABSTRACT

Microbial adhesion is critical for parasitic infection and colonization of host cells. To study the host-parasite interaction in vitro, we established a flow cytometry-based assay to measure the adherence of Trichomonas vaginalis to epithelial cell line SiHa. SiHa cells and T. vaginalis were detected as clearly separated, quantifiable populations by flow cytometry. We found that T. vaginalis attached to SiHa cells as early as 30 min after infection and the binding remained stable up to several hours, allowing for analysis of drug treatment efficacy. Importantly, NADPH oxidase inhibitor DPI treatment induced the detachment of T. vaginalis from SiHa cells in a dose-dependent manner without affecting host cell viability. Thus, this study may provide an understanding for the potential development of therapies against T. vaginalis and other parasite infections.

17.
Article in English | MEDLINE | ID: mdl-32432052

ABSTRACT

The retina is the primary site of Toxoplasma gondii infection in the eye, and choroidal neovascularization in ocular toxoplasmosis is one of the most important causes of visual impairment. Vascular endothelial growth factor (VEGF) is one of the key regulators of blood vessel development, however, little is known about the mechanisms of T. gondii-induced VEGF production in ocular toxoplasmosis. Here, we investigate the effect of T. gondii on VEGF production regulation in human retinal pigment epithelium ARPE-19 cells and attempted to unveil the underlying mechanism of this event by focusing on the interaction between parasite and the selected host intracellular signaling pathways. T. gondii infection increased the expression of VEGF mRNA and protein in ARPE-19 cells in parasite burden- and infection time-dependent manner. The proportional increase of VEGF upstream regulators, HIF-1α and HO-1, was also observed. T. gondii induced the activation of host p-AKT, p-ERK1/2, and p-p38 MAPK in ARPE-19 cells in a parasite-burden dependent manner. However, VEGF expression decreased after the pre-treatment with PI3K inhibitors (LY294002 and GDC-0941), ERK1/2 inhibitor (PD098059), and p38 MAPK inhibitor (SB203580), but not JNK inhibitor (SP600125), in a dose-dependent manner. The anti-VEGF agent bevacizumab or VEGF siRNA transfection prominently inhibited the activation of p-AKT and p-ERK1/2, but not p-p38 MAPK and JNK1/2 in T. gondii-infected ARPE-19 cells. Bevacizumab treatment or VEGF siRNA transfection significantly inhibited the proliferation of T. gondii tachyzoites in the host cell, dose-dependently, but not invasion of parasites. VEGF-receptor 2 (VEGF-R2) antagonist, SU5416, attenuated VEGF production and tachyzoite proliferation in T. gondii-infected ARPE-19 cells in a dose-dependent manner. Collectively, T. gondii prominently induces VEGF production in ARPE-19 cells, and VEGF and AKT/ERK1/2 signaling pathways mutually regulate each other in T. gondii-infected ARPE-19 cells, but not p38 MAPK and JNK1/2 signaling pathways. VEGF and VEGF-R2 control the parasite proliferation in T. gondii-infected ARPE-19 cells. From this study, we revealed the putative mechanisms for VEGF induction as well as the existence of positive feedback between VEGF and PI3K/MAPK signaling pathways in T. gondii-infected retinal pigment epithelium.


Subject(s)
Toxoplasma , Cell Proliferation , Humans , MAP Kinase Signaling System , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Toxoplasma/metabolism , Vascular Endothelial Growth Factor A
18.
Int Immunopharmacol ; 70: 235-240, 2019 May.
Article in English | MEDLINE | ID: mdl-30851703

ABSTRACT

Inflammatory bowel diseases (IBD) induce inflammation in the colon and small intestine. IBD include ulcerative colitis and Crohn's disease, with such common symptoms as severe diarrhea, fever, and blood in the stool. In the current study, we explored the ability of peanut shell extract (PSE) to alleviate IBD in an experimental colonic inflammation model. Colitis was induced by orally administered dextran sulfate sodium (DSS) in mice. Peanut shell extract was prepared using a method of aqueous ethanol. DSS treatment reduced the colon length and mouse body weight, and aggravated disease condition compared with untreated control mice. Oral administration of 400 mg/kg PSE alleviated colon shortening, body weight loss, DAI, and colon injury score in DSS-induced colitis. These physiological improvements were validated by reduced levels of proinflammatory cytokines and infiltrating macrophage accumulation in the inflamed colon in the PSE administered group. These observations suggest that PSE may be developed as an alternative natural extract for the prevention or treatment of IBD.


Subject(s)
Colitis/drug therapy , Colon/drug effects , Inflammatory Bowel Diseases/drug therapy , Macrophages/immunology , Plant Extracts/therapeutic use , Administration, Oral , Animals , Arachis/immunology , Colitis/chemically induced , Colon/metabolism , Colon/pathology , Cytokines/metabolism , Disease Models, Animal , Ethanol/chemistry , Humans , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Plant Extracts/chemistry
19.
Korean J Parasitol ; 56(3): 301-304, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29996636

ABSTRACT

Rodents are important reservoirs of diseases affecting people and livestock, and are major sources of parasite contamination of agricultural products. We surveyed the infection status of intestinal helminths in 2 species of field mice, Apodemus agrarius and A. peninsulae, captured in the agricultural fields of Gangwon-do and Chungcheongnam-do, Korea. Total 83 mice (57 A. agrarius and 26 A. peninsulae) were collected in 2 surveyed areas, and the intestines of each mouse were opened with scissors, and then intestinal contents were examined with microscope. Total 6 species of intestinal helminth were detected in 61 (73.5%) out of 83 mice examined. Four species of nematode, i.e., Nippostrongylus brasiliensis, Aspiculuris tetraptera, Heterakis spp. and ascarid, were found in 40 (48.2%), 14 (16.9%), 11 (13.3%) and 13 (15.7%) mice respectively. One species of cestode, Hymenolepis diminuta and 1 unidentified egg were also detected in the intestines of 14 (16.9%) and 1 (1.2%) mice, respectively. Conclusively, this study identified 5 helminth species in the gastrointestinal tracts of wild rodents captured in some areas in central and northern Korea, and N. brasiliensis was the most prevalent (dominant) species rather than zoonotic ones.


Subject(s)
Animals, Wild/parasitology , Helminths/isolation & purification , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Murinae/parasitology , Nematoda/isolation & purification , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Animals , Cestoda/isolation & purification , Intestines/parasitology , Mice , Republic of Korea/epidemiology
20.
J Agric Food Chem ; 66(30): 8079-8085, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29998729

ABSTRACT

We enzymatically prepared structured monogalactosydiacylglycerols (MGDGs) enriched in pinolenic acid (PLA). PLA-enriched free fatty acids (FFAs) containing ∼86 mol % PLA were produced from an FFA fraction obtained from pine nut oil (PLA content, ∼13 mol %) by urea crystallization. Commercial MGDGs (5 mg) were acidolyzed with PLA-enriched FFAs using four commercial immobilized lipases as biocatalysts. The reaction was performed in acetone (4 mL) in a stirred-batch reactor. Lipozyme RM IM (immobilized Rhizomucor miehei lipase) was the most effective biocatalyst for the reaction. Structured MGDGs containing 42.1 mol % PLA were obtained under optimal reaction conditions: temperature, 25 °C; substrate molar ratio, 1:30 (MGDGs/PLA-enriched FFAs); enzyme loading, 20 wt % of total substrates; and reaction time, 36 h. The structured MGDGs were separated from the reaction products at a purity of 96.6 wt % using silica column chromatography. The structured MGDGs could be possibly used as emulsifiers with appetite-suppression effects.


Subject(s)
Fungal Proteins/chemistry , Galactolipids/chemistry , Linolenic Acids/chemistry , Lipase/chemistry , Pinus/chemistry , Plant Oils/chemistry , Rhizomucor/enzymology , Enzymes, Immobilized/chemistry , Molecular Structure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...