Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 43(12): e2100618, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34738689

ABSTRACT

ABC triblock copolymers composed of hydrophobic poly(ε-caprolactone) (PCL), zwitterionic poly(carboxybetaine methacrylate) midblock, and P(PEGMA-UPy0.15 ) containing supramolecular ureidopyrimidinone moieties, poly(ε-caprolactone-block-carboxybetaine methacrylate-block-[poly(ethylene glycol) methyl ether methacrylate-co-(α-methacryloyl-ω-(6-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)hexylcarbamoyloxy)poly(ethylene glycol))]), are investigated to achieve multifunctional antifreeze hydrogels. The PCL and P(PEGMA-UPy0.15 ) blocks induce the formation of physical network with a hierarchical nanostructure comprising hydrophobic PCL cores and supramolecular junctions, respectively. The super-hydrophilic nature of polyzwitterion midblocks and the confinement effect of the supramolecular junctions enhance the antifreeze performance, where the majority of water molecules remains supercooled below sub-zero temperature. The hydrogel relaxation characterized over a wide range of timescale reveals that the facile dynamics of the supramolecular junctions lead to the self-healing and injectability of the hydrogels. In conjunction with the biodegradable PCL cores, the antifreeze and rheological characteristics of the triblock copolymer hydrogels provide significant potential to use for cryo-preservable and bio-injectable drug storage and delivery.


Subject(s)
Hydrogels , Polyesters , Hydrogels/chemistry , Methacrylates , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...