Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 8(6): 2003714, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747744

ABSTRACT

Mild-acid Zn-MnO2 batteries have been considered a promising alternative to Li-ion batteries for large scale energy storage systems because of their high safety. There have been remarkable improvements in the electrochemical performance of Zn-MnO2 batteries, although the reaction mechanism of the MnO2 cathode is not fully understood and still remains controversial. Herein, the reversible dissolution/deposition (Mn2+/Mn4+) mechanism of the MnO2 cathode through a 2e- reaction is directly evidenced using solution-based analyses, including electron spin resonance spectroscopy and the designed electrochemical experiments. Solid MnO2 (Mn4+) is reduced into Mn2+ (aq) dissolved in the electrolyte during discharge. Mn2+ ions are then deposited on the cathode surface in the form of the mixture of the poorly crystalline Zn-containing MnO2 compounds through two-step reactions during charge. Moreover, the failure mechanism of mild-acid Zn-MnO2 batteries is elucidated in terms of the loss of electrochemically active Mn2+. In this regard, a porous carbon interlayer is introduced to entrap the dissolved Mn2+ ions. The carbon interlayer suppresses the loss of Mn2+ during cycling, resulting in the excellent electrochemical performance of pouch-type Zn-MnO2 cells, such as negligible capacity fading over 100 cycles. These findings provide fundamental insights into strategies to improve the electrochemical performance of aqueous Zn-MnO2 batteries.

2.
Front Microbiol ; 8: 1265, 2017.
Article in English | MEDLINE | ID: mdl-28769880

ABSTRACT

Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...