Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268977

ABSTRACT

To expand the industrial applicability of strong and ductile high Mn-Low Cr steel, a deeper understanding and mechanistic interpretation of long-term corrosion behavior under harsher environmental conditions are needed. From this perspective, the long-term corrosion behaviors of 24Mn3Cr steel under acidic aqueous conditions were examined through a comparison with conventional ferritic steels using the electrochemical measurements (linear polarization resistance and impedance), and immersion test followed by the metallographic observation of corrosion morphologies. In contrast to conventional ferritic steels, 24Mn3Cr steel, which had the lowest corrosion resistance at the early immersion stages (i.e., the highest corrosion current density (icorr) and lowest polarization resistance (Rp)), showed a gradual increase in corrosion resistance with prolonged immersion. Owing to the slow formation kinetics of (Fe,Cr)-enriched oxide scale, a longer incubation time for ensuring a comparatively higher corrosion resistance is required. On the other hand, conventional ferritic steels had an oxide scale with less densification and a lower elemental enrichment level that did not provide an effective anti-corrosion function. From the results, this study can provide significant insight into the industrial applicability of the high Mn-low Cr steel by providing the mechanistic interpretation of corrosion behaviors in acidic aqueous environments.

2.
Sci Technol Adv Mater ; 14(1): 014204, 2013 Feb.
Article in English | MEDLINE | ID: mdl-27877552

ABSTRACT

Deformation and work hardening behavior of Fe-17Mn-0.02C steel containing ε-martensite within the austenite matrix have been investigated by means of in situ microstructural observations and x-ray diffraction analysis. During deformation, the steel shows the deformation-induced transformation of austenite → ε-martensite → α'-martensite as well as the direct transformation of austenite → α'-martensite. Based on the calculation of changes in the fraction of each constituent phase, we found that the phase transformation of austenite → ε-martensite is more effective in work hardening than that of ε-martensite → α'-martensite. Moreover, reverse transformation of ε-martensite → austenite has also been observed during deformation. It originates from the formation of stacking faults within the deformed ε-martensite, resulting in the formation of 6H-long periodic ordered structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...