Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792149

ABSTRACT

This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-ß or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.


Subject(s)
Alopecia , Hair , Phytochemicals , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alopecia/drug therapy , Alopecia/prevention & control , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Animals , Hair/drug effects , Hair/growth & development , Hair Follicle/drug effects , Hair Follicle/metabolism , Hair Follicle/growth & development , Cell Proliferation/drug effects
2.
Antioxidants (Basel) ; 13(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38539863

ABSTRACT

The total melanin synthesis in the skin depends on various melanogenic factors, including the number of viable melanocytes, the level of melanogenic enzymes per cell, and the reaction rate of the enzymes. The purpose of this study is to examine the effects of L-cysteine (L-Cys), L-ascorbic acid (L-AA), and their derivatives on the tyrosinase (TYR) activity and autoxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) in vitro and the viability and melanin synthesis of B16/F10 cells under different conditions. L-Cysteinamide (C-NH2), glutathione (GSH), L-Cys, L-AA, and N-acetyl L-cysteine (NAC) inhibited the catalytic activity of TYR in vitro. L-AA, C-NH2, L-ascorbic acid 2-O-glucoside (AAG), and 3-O-ethyl L-ascorbic acid (EAA) inhibited the autoxidation of L-DOPA in vitro. L-DOPA exhibited cytotoxicity at 0.1 mM and higher concentrations, whereas L-tyrosine (L-Tyr) did not affect cell viability up to 3 mM. L-AA, magnesium L-ascorbyl 2-phosphate (MAP), and L-Cys attenuated the cell death induced by L-DOPA. C-NH2 decreased the intracellular melanin level at the basal state, whereas L-AA, MAP, and AAG conversely increased it. C-NH2 reduced the number of darkly pigmented cells via in situ L-DOPA staining, whereas L-AA, MAP, GSH, and AAG increased it. C-NH2 decreased the intracellular melanin level at the alpha-melanocyte-stimulating hormone (α-MSH)-stimulated state, while NAC and GSH increased it. L-AA and C-NH2 decreased the intracellular melanin level at the L-Tyr-stimulated state, but NAC and GSH increased it. L-Ascorbyl tetraisopalmitate (ATI) showed no or minor effects in most experiments. This study suggests that L-AA can either promote or inhibit the different melanogenic factors, and C-NH2 can inhibit the multiple melanogenic factors consistently. This study highlights the multifaceted properties of L-Cys, L-AA, and their derivatives that can direct their therapeutic applications in hyperpigmentation, hypopigmentation, or both disorders.

3.
Antioxidants (Basel) ; 12(4)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37107176

ABSTRACT

Metal chelators are used for various industrial and medical purposes based on their physicochemical properties and biological activities. In biological systems, copper ions bind to certain enzymes as cofactors to confer catalytic activity or bind to specific proteins for safe storage and transport. However, unbound free copper ions can catalyze the production of reactive oxygen species (ROS), causing oxidative stress and cell death. The present study aims to identify amino acids with copper chelation activities that might mitigate oxidative stress and toxicity in skin cells exposed to copper ions. A total of 20 free amino acids and 20 amidated amino acids were compared for their copper chelation activities in vitro and the cytoprotective effects in cultured HaCaT keratinocytes exposed to CuSO4. Among the free amino acids, cysteine showed the highest copper chelation activity, followed by histidine and glutamic acid. Among the amidated amino acids, cysteinamide showed the highest copper chelation activity, followed by histidinamide and aspartic acid. CuSO4 (0.4-1.0 mM) caused cell death in a concentration-dependent manner. Among the free and amidated amino acids (1.0 mM), only histidine and histidinamide prevented the HaCaT cell death induced by CuSO4 (1.0 mM). Cysteine and cysteinamide had no cytoprotective effects despite their potent copper-chelating activities. EDTA and GHK-Cu, which were used as reference compounds, had no cytoprotective effects either. Histidine and histidinamide suppressed the CuSO4-induced ROS production, glutathione oxidation, lipid peroxidation, and protein carbonylation in HaCaT cells, whereas cysteine and cysteinamide had no such effects. Bovine serum albumin (BSA) showed copper-chelating activity at 0.5-1.0 mM (34-68 mg mL-1). Histidine, histidinamide, and BSA at 0.5-1.0 mM enhanced the viability of cells exposed to CuCl2 or CuSO4 (0.5 mM or 1.0 mM) whereas cysteine and cysteinamide had no such effects. The results of this study suggest that histidine and histidinamide have more advantageous properties than cysteine and cysteinamide in terms of alleviating copper ion-induced toxic effects in the skin.

4.
World J Clin Cases ; 10(17): 5776-5782, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35979121

ABSTRACT

BACKGROUND: Hemothorax is a rare but life-threatening complication of central venous catheterization. Recent reports suggest that ultrasound guidance may reduce complications however, it does not guarantee safety. CASE SUMMARY: A 75-year-old male patient was admitted for laparoscopic radical nephrectomy. Under ultrasound guidance, right internal jugular vein catheterization was successfully achieved after failure to aspirate blood from the catheter in the first attempt. Sudden hypotension developed after surgical positioning and persisted until the end of the operation, lasting for about 4 h. In the recovery room, a massive hemothorax was identified on chest radiography and computed tomography. The patient recovered following chest tube drainage of 1.6 L blood. CONCLUSION: Hemothorax must be suspected when unexplained hemodynamic instability develops after central venous catheterization despite ultrasound guidance. So the proper use of ultrasound is important.

5.
Molecules ; 27(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35566134

ABSTRACT

Hemp (Cannabis sativa L.) contains a variety of secondary metabolites, including cannabinoids, such as psychoactive (-)-trans-Δ9-tetrahydrocannabinol. The present study was conducted to identify the major phenolic components contained in hemp root, which has been relatively under-researched compared to other parts of hemp. The aqueous ethanol extract of hemp roots was fractionated into methylene chloride (MC), ethyl acetate (EA), and water (WT) fractions, and high-performance liquid chromatography with photodiode array detection (HPLC-DAD) analysis was performed. The main ultraviolet (UV)-absorbing phenolic compound contained in the EA fraction was identified as p-coumaric acid by comparing the retention time and UV absorption spectrum with a standard. Silica gel column chromatography was performed to isolate a hydrophobic derivative of p-coumaric acid contained in the MC fraction. Nuclear magnetic resonance (NMR) analysis identified the isolated compound as ethyl p-coumarate. For comparative purposes, ethyl p-coumarate was also chemically synthesized by the esterification reaction of p-coumaric acid. The content of p-coumaric acid and ethyl p-coumarate in the total extract of hemp root was estimated to be 2.61 mg g-1 and 6.47 mg g-1, respectively, by HPLC-DAD analysis. These values correspond to 84 mg Kg-1 dry root and 216 mg Kg-1 dry root, respectively. In conclusion, this study identified p-coumaric acid and ethyl p-coumarate as the main phenolic compounds contained in the hemp roots.


Subject(s)
Cannabinoids , Cannabis , Cannabinoids/chemistry , Cannabis/chemistry , Chromatography, High Pressure Liquid/methods , Coumaric Acids , Phenols/analysis , Plant Extracts/chemistry
6.
Antioxidants (Basel) ; 11(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35453466

ABSTRACT

Air pollution causes oxidative stress that leads to inflammatory diseases and premature aging of the skin. The purpose of this study was to examine the antioxidant effect of Korean propolis on oxidative stress in human epidermal HaCaT keratinocytes exposed to particulate matter with a diameter of less than 10 µm (PM10). The total ethanol extract of propolis was solvent-fractionated with water and methylene chloride to divide into a hydrophilic fraction and a lipophilic fraction. The lipophilic fraction of propolis was slightly more cytotoxic, and the hydrophilic fraction was much less cytotoxic than the total extract. The hydrophilic fraction did not affect the viability of cells exposed to PM10, but the total propolis extract and the lipophilic fraction aggravated the toxicity of PM10. The total extract and hydrophilic fraction inhibited PM10-induced ROS production and lipid peroxidation in a concentration-dependent manner, whereas the lipophilic fraction did not show such effects. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) analysis showed that the hydrophilic fraction contained phenylpropanoids, such as caffeic acid, p-coumaric acid, and ferulic acid, whereas the lipophilic faction contained caffeic acid phenethyl ester (CAPE). The former three compounds inhibited PM10-induced ROS production, lipid peroxidation, and/or glutathione oxidation, and ferulic acid was the most effective among them, but CAPE exhibited cytotoxicity and aggravated the toxicity of PM10. This study suggests that Korean propolis, when properly purified, has the potential to be used as a cosmetic material that helps to alleviate the skin toxicity of air pollutants.

7.
PLoS One ; 12(5): e0176227, 2017.
Article in English | MEDLINE | ID: mdl-28472175

ABSTRACT

Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient's age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA phantom.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional , Radiosurgery/methods , Spine/diagnostic imaging , Humans
8.
J Cosmet Laser Ther ; 18(7): 405-408, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27223252

ABSTRACT

BACKGROUND: Forehead wrinkles are the result of contracture of the frontalis muscle and the skin aging process. Currently, hyaluronic acid filler and botulinum toxin are the main materials used for correction of these wrinkles. In addition, polydioxanone (PDO) thread has also been applied for this treatment. OBJECTIVE: In order to evaluate the efficacy and safety of multi-PDO scaffold in animal and human skin, we tested PDO insertion in rat and mini-pig models and human volunteers with forehead wrinkles. METHODS: A stent-shaped multi-PDO scaffold was inserted under the panniculus carnosus of rat dorsal skin and the subcutaneous layer of mini-pig dorsal skin and forehead wrinkles in three human volunteers. RESULTS: Histological analysis at 12 weeks revealed evidence of de novo collagen synthesis, which was consistent with clinical results on photo evaluation. CONCLUSION: Stent-shaped multi-PDO scaffolds may be another effective and safe treatment modality for reduction of forehead wrinkles.


Subject(s)
Forehead/surgery , Guided Tissue Regeneration/methods , Polydioxanone/administration & dosage , Animals , Biocompatible Materials , Female , Humans , Pilot Projects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...