Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Prosthodont ; 10(5): 381-387, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30370030

ABSTRACT

PURPOSE: Cement-retained implant prostheses can lack proper retrievability during repair, and residual cement can cause peri-implantitis. The purpose of this in vitro study was to evaluate the influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with lingual slots, known as retrievable cement-type slots (RCS). MATERIALS AND METHODS: We fabricated six types of titanium abutments (10 of each type) with two different heights (4 mm and 6 mm), three different convergence angles (8°, 10°, and 12°), a sloped shoulder margin (0.6 mm depth), a rectangular shape (6 mm × 6.5 mm) with rounded edges, and a rectangular ledge (2 mm × 1 mm) for the RCS. One monolithic zirconia crown was fabricated for each abutment using a dental computer-aided design/computer-aided manufacturing system. The abutments and crowns were permanently cemented together with dual-curing resin cement, followed by 24 hours in demineralized water at room temperature. Using a custom-made device with a slot driver and torque gauge, we recorded the torque (N·cm) required to remove the crowns. Statistical analysis was conducted using multiple regression analysis and Mann-Whitney U tests (α=.05). RESULTS: Removal torques significantly decreased as convergence angles increased. Multiple regression analysis showed no significant interaction between the abutment height and the convergence angle (Durbin-Watson ratio: 2.186). CONCLUSION: Within the limitations of this in vitro study, we suggest that the retrievability of cement-retained implant prostheses with RCS can be maintained by adjusting the abutment height and convergence angle, even when they are permanently cemented together.

2.
Eur J Pharmacol ; 635(1-3): 72-8, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20303934

ABSTRACT

Neurons within the periaqueductal gray (PAG) have been implicated in the central regulation of pain signals by affecting the descending inhibitory pathway. Here we report on the functional role of presynaptic kainate receptors within the PAG. Using a conventional whole-cell patch clamp technique, we recorded GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) from mechanically isolated rat PAG neurons in the presence of 300nM tetrodotoxin and 20microM DL-2-amino-5-phosphonovaleric acid under voltage-clamp conditions. Kainic acid at a 10microM concentration significantly increased the frequency of GABAergic mIPSCs without affecting their amplitude, suggesting that kainic acid acts presynaptically to enhance spontaneous GABA release. The kainic acid-induced increase in mIPSC frequency was completely blocked by CNQX, a selective AMPA/kainate receptor antagonist. While neither AMPA nor NMDA affected GABAergic mIPSC frequency, ATPA, a selective agonist of GluR5-containing kainate receptors, increased GABAergic mIPSC frequency in a concentration-dependent manner. The kainic acid-induced increase in mIPSC frequency was completely suppressed either in the presence of 100microM Cd(2+), a general voltage-dependent Ca(2+) channel (VDCC) blocker, or in the Na(+)-free external solution. These results suggest that presynaptic kainate receptors have a low permeability to Ca(2+), and that their activation elicits a presynaptic depolarization large enough to activate presynaptic VDCCs. Presynaptic kainate receptors on GABAergic nerve terminals appear to modulate GABAergic transmission, and in doing so may play an important role in the regulation of PAG neuron excitability.


Subject(s)
Periaqueductal Gray/cytology , Periaqueductal Gray/physiology , Presynaptic Terminals/metabolism , Receptors, Kainic Acid/metabolism , Synaptic Transmission , gamma-Aminobutyric Acid/metabolism , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Inhibitory Postsynaptic Potentials/drug effects , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Permeability , Presynaptic Terminals/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Kainic Acid/antagonists & inhibitors , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...