Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Int Conf Robot Autom ; 2017: 6694-6699, 2017.
Article in English | MEDLINE | ID: mdl-29527386

ABSTRACT

Repeated mechanical failure due to accidental impact is one of the main reasons why people with upper-limb amputations abandon commercially-available prosthetic hands. To address this problem, we present the design and evaluation of a compliant four-bar linkage mechanism that makes the fingers of a prosthetic hand more impact resistant. Our design replaces both the rigid input and coupler links with a monolithic compliant bone, and replaces the follower link with three layers of pre-stressed spring steel. This design behaves like a conventional four-bar linkage but adds lateral compliance and eliminates a pin joint, which is a main site of failure on impact. Results from free-end and fixed-end impact tests show that, compared to those made with a conventional four-bar linkage, fingers made with our design absorb up to 11% more energy on impact with no mechanical failure. We also show the integration of these fingers in a prosthetic hand that is low-cost, light-weight, and easy to assemble, and that has grasping performance comparable to commercially-available hands.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 4642-4645, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28261008

ABSTRACT

In this paper, we describe the design and implementation of a low-cost, open-source prosthetic hand that enables both motor control and sensory feedback for people with transradial amputations. We integrate electromyographic pattern recognition for motor control along with contact reflexes and sensory substitution to provide feedback to the user. Compliant joints allow for robustness to impacts. The entire hand can be built for around $550. This low cost makes research and development of sensorimotor prosthetic hands more accessible to researchers worldwide, while also being affordable for people with amputations in developing nations. We evaluate the sensorimotor capabilites of our hand with a subject with a transradial amputation. We show that using contact reflexes and sensory substitution, when compared to standard myoelectric prostheses that lack these features, improves grasping of delicate objects like an eggshell and a cup of water both with and without visual feedback. Our hand is easily integrated into standard sockets, facilitating long-term testing of sensorimotor capabilities.


Subject(s)
Amputation, Surgical , Artificial Limbs/economics , Costs and Cost Analysis , Hand/surgery , Prosthesis Design , Radius/surgery , Adult , Electromyography , Feedback, Sensory , Hand Strength , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...