Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm Res ; 41(3): 333-346, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29460135

ABSTRACT

We investigated the influence of simvastatin, a statin, on the secretion of catecholamines (CA) in rat adrenal glands, and clarified its action mechanism. Simvastatin suppressed acetylcholine (ACh)-evoked CA release in a dose- and time-dependent fashion. In the presence of simvastatin, CA secretion evoked by 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP), angiotensin II, high K+, veratridine, and Bay-K-8644 was time-dependently inhibited. However, in the simultaneous presence of simvastatin and Nω-nitro-L-arginine methyl ester hydrochloride, CA secretion evoked by angiotensin II and DMPP recovered to control levels. Adrenal NO release was increased by simvastatin-treatment. Simvastatin-inhibited CA secretion was not affected by treatment with mevalonate. Pravastatin did not influence ACh-evoked CA secretion, while atorvastatin reduced it. In the simultaneous presence of simvastatin and fimasartan, ACh-induced CA release was markedly reduced compared to that of fimasartan-treatment alone. We present the first evidence that simvastatin reduces adrenal CA secretion induced by stimulation of nicotinic and AT1-receptors. Simvastatin-induced inhibition seems to involve reducing the influx of both Ca2+ and Na+ into adrenochromaffin cells, partly via the elevation of NO production by NO synthase activation, without inhibition of 3-hydroxy-methylglutaryl coenzyme A reductase. Co-administration of simvastatin and fimasartan may be clinically helpful for the treatment of cardiovascular diseases.


Subject(s)
Adrenal Glands/metabolism , Catecholamines/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Receptors, Nicotinic/metabolism , Simvastatin/pharmacology , Adrenal Glands/drug effects , Animals , Catecholamines/antagonists & inhibitors , Male , Nicotinic Agonists/pharmacology , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/agonists
2.
Clin Hypertens ; 20: 6, 2014.
Article in English | MEDLINE | ID: mdl-26893911

ABSTRACT

INTRODUCTION: The present study was designed to examine whether methylene chloride (CH2Cl2) fraction extracted from Rubus coreanum affects the contractility of the isolated thoracic aortic strips and blood pressure of normotensive rats. METHODS: One of the common carotid arteries or of the femoral arteries was catheterized with a polyethylene tubing. The tubing was connected to a pressure transducer, and pulse of the mean arterial blood pressure was recorded on a biological polygraph continuously. RESULTS: The CH2Cl2 fraction (range, 200 to 800 µg/mL) significantly depressed both phenylephrine (PE, 10 µM)- and high K(+) (56 mM)-induced contractile responses of the isolated thoracic aortic strips in a concentration-dependent fashion. In the simultaneous presence of N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) (an inhibitor of nitric oxide [NO] synthase, 300 µM) and the CH2Cl2 fraction (400 µg/mL), both PE- and high K(+)-induced contractile responses were recovered to the significant level of the corresponding control response in comparison with inhibition of CH2Cl2 fraction treatment alone. Moreover, in the simultaneous presence of the CH2Cl2 fraction after pretreatment with 0.4% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate), both PE- and high K(+)-induced contractile responses were recovered to the significant level of the corresponding control response compared to the inhibitory response of CH2Cl2 fraction treatment alone. Also, in anesthetized rats, the CH2Cl2 fraction (range, 0.3 to 3.0 mg/kg) injected into a femoral vein dose-dependently produced depressor responses. This hypotensive action of the CH2Cl2 fraction was greatly inhibited after treatment with phentolamine (1 mg/kg), chlorisondamine (1 mg/kg), L-NAME (3 mg/kg/30 min), or sodium nitroprusside (30 µg/kg/30 min). Intravenous infusion of the CH2Cl2 fraction (range, 1.0 to 10.0 mg/kg/30 min) markedly inhibited norepinephrine-induced pressor responses. DISCUSSION: Taken together, these results demonstrate that the CH2Cl2 fraction causes vascular relaxation in the isolated rat thoracic aortic strips as well as hypotensive action in anesthetized rats. These vasorelaxation and hypotension of the CH2Cl2 fraction seem to be mediated at least by the increased NO production through the activation of NO synthase of the vascular endothelium and the inhibitory adrenergic modulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...