Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Nano Lett ; 24(34): 10583-10591, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39137020

ABSTRACT

As global freshwater shortages worsen, solar steam generation (SSG) emerges as a promising, eco-friendly, and cost-effective solution for water purification. However, widespread SSG implementation requires efficient photothermal materials and solar evaporators that integrate enhanced light-to-heat conversion, rapid water transportation, and optimal thermal management. This study investigates using nonoxidized graphene flakes (NOGF) with negligible defects as photothermal materials capable of absorbing over 98% of sunlight. By combining NOGF with cellulose nanofibers (CNF) through bidirectional freeze casting, we created a vertically and radially aligned solar evaporator. The hybrid aerogel exhibited exceptional solar absorption, efficient solar-to-thermal conversion, and improved surface wettability. Inspired by tree structures, our design ensures rapid water supply while minimizing heat loss. With low NOGF content (∼10.0%), the NOGF/CNF aerogel achieves a solar steam generation rate of 2.39 kg m-2 h-1 with an energy conversion efficiency of 93.7% under 1-sun illumination, promising applications in seawater desalination and wastewater purification.

2.
Anim Biosci ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39210811

ABSTRACT

Objective: This study aimed to develop an enhanced model for predicting pork freshness by integrating hyperspectral imaging and chemometric analysis. Methods: A total of 30 Longissimus thoracis samples from three sows were stored under vacuum conditions at 4 ± 2℃ for 27 days to acquire data. The freshness prediction model for pork loin employed partial least squares regression (PLSR) with Monte Carlo data augmentation. Total bacterial count (TBC) and volatile basic nitrogen (VBN), which exhibited increases correlating with metabolite changes during storage, were designated as freshness indicators. Metabolic contents of the sample were quantified using NMR. Results: A total of 64 metabolites were identified, with 34 and 35 showing high correlations with TBC and VBN, respectively. Lysine and malate for TBC (R2 = 0.886) and methionine and niacinamide for VBN (R2 = 0.909) were identified as the main metabolites in each indicator by Model 1. Model 2 predicted main metabolites using HSI spectral data. Model 3, which predicted freshness indicators with HSI spectral data, demonstrated high prediction coefficients; TBC R2p = 0.7220 and VBN R2p = 0.8392. Furthermore, the combination model (Model 4), utilizing HSI spectral data and predicted metabolites from Model 2 to predict freshness indicators, improved the prediction coefficients compared to Model 3; TBC R2p = 0.7583 and VBN R2p = 0.8441. Conclusion: Combining HSI spectral data with metabolites correlated to the meat freshness may elucidate why certain HSI spectra indicate meat freshness and prove to be more effective in predicting the freshness state of pork loin compared to using only HSI spectral data.

3.
Meat Sci ; 216: 109577, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38964227

ABSTRACT

This study aimed to evaluate the sous-vide cooking and ficin treatment effects on the tenderness of beef steak and optimize it for the elderly using response surface methodology (RSM). The M. semitendinosus (ST) from Chikso cattle was shaped into 5 × 5 × 2.54 cm pieces. Ficin solution was injected into the ST steak at 10% of the meat weight, and sous-vide cooked in a water bath at 65 °C for 6 or 12 h. As ficin concentration increased, L*- and a*-value, shear force, and hardness decreased, while soluble peptides increased (P < 0.05). As cooking time increased, cooking loss and collagen solubility of the steak increased (P < 0.05). An interaction effect between ficin and sous-vide cooking was found in L*- and a*-value, shear force, hardness, and soluble peptides (P < 0.05). A model to optimize the hardness for elderly people was established (R2 = 0.7991). Optimization conditions by RSM were 0.86 U/L with 8.87 h (23 N/cm3) for tooth intake (grade 1), 16.31 U/L with 13.24 h (3 N/cm3) for gums intake (grade 2), according to KS H 4897 and Universal Design Foods concept for the elderly. These optimized conditions enable the production of customized products tailored to the oral conditions of elderly people.


Subject(s)
Cooking , Muscle, Skeletal , Red Meat , Animals , Cattle , Humans , Red Meat/analysis , Muscle, Skeletal/chemistry , Hardness , Color , Collagen/analysis , Aged
4.
Adv Sci (Weinh) ; 11(32): e2404035, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38899829

ABSTRACT

Threshold-switching devices based on amorphous chalcogenides are considered for use as selector devices in 3D crossbar memories. However, the fundamental understanding of amorphous chalcogenide is hindered owing to the complexity of the local structures and difficulties in the trap analysis of multinary compounds. Furthermore, after threshold switching, the local structures gradually evolve to more stable energy states owing to the unstable homopolar bonds. Herein, based on trap analysis, DFT simulations, and operando XPS analysis, it is determined that the threshold switching mechanism is deeply related to the charged state of Se-Se homopolar defects. A threshold switching device is demonstrated with an excellent performance through the modification of the local structure via the addition of alloying elements and investigating the time-dependent trap evolution. The results concerning the trap dynamics of local atomic structures in threshold switching phenomena may be used to improve the design of amorphous chalcogenides.

5.
J Anim Sci Technol ; 66(2): 412-424, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38628680

ABSTRACT

Lairage, a part of the animal welfare practices, has been known to mitigate pre-slaughter stress in animals. However, research investigating the relationship between lairage and pork meat quality remains scarce. In this study, we conducted a comparative analysis of the physicochemical quality and storage stability of pork from pigs subjected to immediate slaughter (CON) and those provided with a 24 h lairage before slaughter (LRG) over a 7-day storage period. The loins from 20 castrated pigs in each group, respectively, were collected at 1, 3, 5, and 7 days and used for analysis of meat quality and storage stability, including pH, meat color, moisture, water holding capacity, drip loss, cooking loss, shear force, fatty acid composition, lipid oxidation, antioxidant activity, and electrical resistance. Overall, there were no significant differences in physicochemical meat quality parameters between CON and LRG groups. Similarly, no differences were observed in the storage stability of pork including 2-thiobarbituric acid reactive substances, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and electrical resistance. However, the proportion of unsaturated fatty acids was significantly higher in LRG compared to CON. In conclusion, 24 h lairage for castrated pigs had limited impact on meat quality and storage stability but led to an increase in the unsaturated fatty acid proportion.

6.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569615

ABSTRACT

The conversion of cellular prion protein (PrPC) into pathogenic prion isoforms (PrPSc) and the mutation of PRNP are definite causes of prion diseases. Unfortunately, without exception, prion diseases are untreatable and fatal neurodegenerative disorders; therefore, one area of research focuses on identifying medicines that can delay the progression of these diseases. According to the concept of drug repositioning, we investigated the efficacy of the c-Abl tyrosine kinase inhibitor radotinib, which is a drug that is approved for the treatment of chronic myeloid leukemia, in the treatment of disease progression in prion models, including prion-infected cell models, Tga20 and hamster cerebellar slice culture models, and 263K scrapie-infected hamster models. Radotinib inhibited PrPSc deposition in neuronal ZW13-2 cells that were infected with the 22L or 139A scrapie strains and in cerebellar slice cultures that were infected with the 22L or 263K scrapie strains. Interestingly, hamsters that were intraperitoneally injected with the 263K scrapie strain and intragastrically treated with radotinib (100 mg/kg) exhibited prolonged survival times (159 ± 28.6 days) compared to nontreated hamsters (135 ± 9.9 days) as well as reduced PrPSc deposition and ameliorated pathology. However, intraperitoneal injection of radotinib exerted a smaller effect on the survival rate of the hamsters. Additionally, we found that different concentrations of radotinib (60, 100, and 200 mg/kg) had similar effects on survival time, but this effect was not observed after treatment with a low dose (30 mg/kg) of radotinib. Interestingly, when radotinib was administered 4 or 8 weeks after prion inoculation, the treated hamsters survived longer than the vehicle-treated hamsters. Additionally, a pharmacokinetic assay revealed that radotinib effectively crossed the blood-brain barrier. Based on our findings, we suggest that radotinib is a new candidate anti-prion drug that could possibly be used to treat prion diseases and promote the remission of symptoms.


Subject(s)
Prion Diseases , Prions , Scrapie , Cricetinae , Animals , Sheep , Scrapie/metabolism , Prions/metabolism , PrPSc Proteins/metabolism , Brain/metabolism , Prion Diseases/metabolism
7.
Sensors (Basel) ; 22(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36236280

ABSTRACT

Solar irradiance forecasting is fundamental and essential for commercializing solar energy generation by overcoming output variability. Accurate forecasting depends on historical solar irradiance data, correlations between various meteorological variables (e.g., wind speed, humidity, and cloudiness), and influences between the weather contexts of spatially adjacent regions. However, existing studies have been limited to spatiotemporal analysis of a few variables, which have clear correlations with solar irradiance (e.g., sunshine duration), and do not attempt to establish atmospheric contextual information from a variety of meteorological variables. Therefore, this study proposes a novel solar irradiance forecasting model that represents atmospheric parameters observed from multiple stations as an attributed dynamic network and analyzes temporal changes in the network by extending existing spatio-temporal graph convolutional network (ST-GCN) models. By comparing the proposed model with existing models, we also investigated the contributions of (i) the spatial adjacency of the stations, (ii) temporal changes in the meteorological variables, and (iii) the variety of variables to the forecasting performance. We evaluated the performance of the proposed and existing models by predicting the hourly solar irradiance at observation stations in the Korean Peninsula. The experimental results showed that the three features are synergistic and have correlations that are difficult to establish using single-aspect analysis.

8.
Sci Rep ; 12(1): 4354, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288637

ABSTRACT

This study aimed to evaluate the prevalence of left main or triple vessel coronary artery disease (CAD) in comatose out-of-hospital cardiac arrest (OHCA) survivors and assessed their outcome based on the revascularization strategy. This multicenter, retrospective, observational registry-based study was conducted at 9 Korean tertiary care hospitals. Adult comatose OHCA survivors with left main or triple vessel CAD documented by immediate (≤ 2 h) coronary angiography after return of spontaneous circulation between 2011 and 2019 were included. The primary outcome was neurologically intact survival at 1-month. Among 727 OHCA patients, 150 (25%) had left main or triple vessel CAD and underwent complete (N = 32), incomplete (N = 78), and no immediate (N = 40) revascularization, respectively. The rate of neurologically intact survival at 1 month was significantly different among the groups (53%, 32%, and 23% for complete, incomplete, and no immediate revascularization groups, respectively; P = 0.02). After adjustment using the inverse probability of treatment weighting, complete revascularization was associated with neurologically intact survival at 1 month (odds ratio, 2.635; P = 0.01). Left main or triple vessel CAD is not uncommon in OHCA patients. The complete revascularization was associated with better outcome. Further clinical trials to confirm the best revascularization strategy are needed.


Subject(s)
Cardiopulmonary Resuscitation , Coronary Artery Disease , Out-of-Hospital Cardiac Arrest , Adult , Coma/complications , Coronary Angiography , Coronary Artery Disease/complications , Coronary Artery Disease/surgery , Humans , Retrospective Studies , Survivors , Treatment Outcome
9.
Medicina (Kaunas) ; 58(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35208513

ABSTRACT

Background and Objectives: The currently used pharmacological agents for metabolic disorders such as type II diabetes have several limitations and adverse effects; thus, there is a need for alternative therapeutic drugs and health functional foods. Materials and Methods: This study investigated the pharmacological effects of water chestnut (fruit of Trapa japonica) extracts (WC: 50-200 mg/kg) for type II diabetes using a 45% Kcal high-fat diet (HFD)-fed type II obese diabetic mice model for a period of 84 days, and the effects were compared to those of metformin (250 mg/kg). Results: Increases in body weight, serum biochemical indices such as triglycerides, low-density lipoprotein, and blood urea nitrogen, increases in antioxidant defense system enzymes such as catalase, superoxide dismutase, and glutathione, and mRNA expressions (such as AMPKα1 and AMPKα2) in the liver tissue and mRNA expressions (such as AMPKα2 mRNA, leptin, and C/EBPα) in the adipose tissue were observed in the HFD control group. The WC (50 mg/kg)-administered group showed no significant improvements in diabetic complications. However, HFD-induced obesity and diabetes-related complications such as hyperlipidemia, diabetic nephropathy, nonalcoholic fatty liver disease (NAFLD), oxidative stress, activity of antioxidant defense systems, and gene expressions were significantly and dose-dependently inhibited and/or normalized by oral administration of WC (100 mg/kg and 200 mg/kg), particularly at a dose of 100 mg/kg. Conclusions: The results of this study suggest that WC at an appropriate dose could be used to develop an effective therapeutic drug or functional food for type II diabetes and various associated complications, including NAFLD.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Fruit , Liver , Mice, Obese , Obesity/complications , Obesity/drug therapy , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
10.
Chem Asian J ; 16(17): 2481-2488, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34254451

ABSTRACT

Despite the recent rapid development of organic solar cells (OSCs), the low dielectric constant (ϵr =3-4) of organic semiconducting materials limits their performance lower than inorganic and perovskite solar cells. In this work, we introduce oligo(ethylene glycol) (OEG) side chains into the dicyanodistyrylbenzene-based non-fullerene acceptors (NIDCS) to increase its ϵr up to 5.4. In particular, a NIDCS acceptor bearing two triethylene glycol chains (NIDCS-EO3) shows VOC as high as 1.12 V in an OSC device with a polymer donor PTB7, which is attributed to reduced exciton binding energy of the blend film. Also, the larger size grain formation with well-ordered stacking structure of the NIDCS-EO3 blend film leads to the increased charge mobility and thus to the improved charge mobility balance, resulting in higher JSC , FF, and PCE in the OSC device compared to those of a device using the hexyl chain-based NIDCS acceptor (NIDCS-HO). Finally, we fabricate NIDCS-EO3 devices with various commercial donors including P3HT, DTS-F, and PCE11 to show higher photovoltaic performance than the NIDCS-HO devices, suggesting versatility of NIDCS-EO3.

11.
Sci Adv ; 6(28): eabb5898, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32923597

ABSTRACT

Electronic applications are continuously developing and taking new forms. Foldable, rollable, and wearable displays are applicable for human health care monitoring or robotics, and their operation relies on organic light-emitting diodes (OLEDs). Yet, the development of semiconducting materials with high mechanical flexibility has remained a challenge and restricted their use in unusual format electronics. This study presents a wearable full-color OLED display using a two-dimensional (2D) material-based backplane transistor. The 18-by-18 thin-film transistor array was fabricated on a thin MoS2 film that was transferred to Al2O3 (30 nm)/polyethylene terephthalate (6 µm). Red, green, and blue OLED pixels were deposited on the device surface. This 2D material offered excellent mechanical and electrical properties and proved to be capable of driving circuits for the control of OLED pixels. The ultrathin device substrate allowed for integration of the display on an unusual substrate, namely, a human hand.

12.
ACS Appl Mater Interfaces ; 11(15): 14222-14228, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30912424

ABSTRACT

Stretchable alternating-current electroluminescent (ACEL) devices are required due to their potential in wearable, biomedical, e-skin, robotic, lighting, and display applications; however, one of the main hurdles is to achieve uniform electroluminescence with an optimal combination of transparency, conductivity, and stretchability in electrodes. We therefore propose a fabrication scheme involving strategically combining two-dimensional graphene layers with a silver nanowire (Ag NW)-embedded PEDOT:PSS film. The developed hybrid electrode overcomes the limitations of commonly known metallic NWs and ionic conductor-based electrodes for ACEL applications. Furthermore, the potential of the hybrid electrode is realized in demonstrating large-area stretchable ACEL devices composed of an 8 × 8 passive array. The prototype ACEL passive array demonstrates efficient and uniform electroluminescence under high levels of mechanical deformation such as bending, rolling, twisting, and stretching.

13.
ACS Appl Mater Interfaces ; 11(8): 8301-8309, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30698409

ABSTRACT

We describe herein the comprehensive theoretical and experimental studies on the transistor mobility of organic semiconductors by correlating a two-dimensional (2D) intermolecular interaction with thin-film morphology and the electronic coupling structure. We developed a novel bis-lactam-based small molecule, 1,5-dioctyl-3,7-di(thiophen-2-yl)-1,5-naphthyridine-2,6-dione (C8-NTDT), with a 2D-type C-H···O═C intermolecular interaction along the in-plane directions of the crystal packing structure, which is characteristically different from the one-dimensional-type intermolecular interaction shown in the typical bis-lactam molecule of 2,5-dioctyl-3,6-di(thiophen-2-yl)pyrrolo[3,4- c]pyrrole-1,4-dione (C8-DPPT). Experimentally and theoretically, C8-NTDT exhibited more favorable thin-film morphology and an electronic coupling structure for charge transport because of its unique 2D intermolecular interactions compared with C8-DPPT. In fact, C8-NTDT exhibited a hole mobility of up to 1.29 cm2 V-1 s-1 and an on/off ratio of 107 in a vacuum-processed device. Moreover, the high solubility with the 2D electronic coupling structure of C8-NTDT enables versatile solution processing for device fabrication without performance degradation compared to the vacuum-processed device. As an example, we could demonstrate a hole mobility of up to 1.10 cm2 V-1 s-1 for the spin-coated devices, which is one of the best performances among the solution-processed organic field-effect transistors based on bis-lactam-containing small molecules.

14.
Sci Adv ; 4(4): eaas8721, 2018 04.
Article in English | MEDLINE | ID: mdl-29713686

ABSTRACT

Atomically thin molybdenum disulfide (MoS2) has been extensively investigated in semiconductor electronics but has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an active drive element is hampered by the large contact resistance at the metal/MoS2 interface, which hinders the transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified switching device architecture is proposed for efficiently exploiting the high-k dielectric Al2O3 layer, which, when integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its potential as a wearable display attached to a human wrist is demonstrated.

16.
J Agric Food Chem ; 63(41): 9053-61, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26437568

ABSTRACT

Sargaquinoic acid (SQA) has been known for its antioxidant and anti-inflammatory properties. This study investigated the effects of SQA isolated from Sargassum serratifolium on the inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). SQA decreased the expression of cell adhesion molecules such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as chemotactic cytokines such as interleukin-8 and monocyte chemoattractant protein-1 in TNF-α-treated HUVECs. As a result, SQA prevented monocyte adhesion to TNF-α-induced adhesion. SQA also inhibited TNF-α-induced nuclear factor kappa B (NF-κB) translocation into the nucleus by preventing proteolytic degradation of inhibitor κB-α. Overall, SQA protects against TNF-α-induced vascular inflammation through inhibition of the NF-κB pathway in HUVECs. These data suggest that SQA may be used as a therapeutic agent for vascular inflammatory diseases such as atherosclerosis.


Subject(s)
Alkenes/pharmacology , Benzoquinones/pharmacology , Cell Adhesion/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Monocytes/cytology , NF-kappa B/metabolism , Plant Extracts/pharmacology , Sargassum/chemistry , Tumor Necrosis Factor-alpha/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intercellular Adhesion Molecule-1/metabolism , Monocytes/drug effects , Monocytes/metabolism , Signal Transduction/drug effects , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL