Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(5): 2793-2802, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38258810

ABSTRACT

To introduce a design strategy for improving optical properties, two silver-amino alkylpyridine nitrate complexes, AgC6H8N3O3 and Ag2C14H20N6O6, were successfully synthesized using a recrystallization method. By employing polarizable π-conjugated [NO3-] ions, two types of pyridine ligands, and silver cations with a high affinity for pyridine, we obtained a one-dimensional chain structure with 4-aminomethylpyridine (AgC6H8N3O3) and a zero-dimensional molecular compound by introducing a relatively flexible aliphatic chain with 4-(2-aminoethyl)pyridine (Ag2C14H20N6O6). The compounds crystallize in the triclinic crystal system with the centrosymmetric P-1 space group, exhibiting a change in orientation between the π-conjugated system and the silver ion. Despite similar optical band gaps (3.69 eV for AgC6H8N3O3 and 3.73 eV for Ag2C14H20N6O6), AgC6H8N3O3 shows higher absorption in the 350-600 nm range. Electronic structure calculations support the ultraviolet absorption findings, suggesting that charge transfer with π-conjugated systems influences birefringence. Ag2C14H20N6O6 exhibits experimental birefringence (0.261@546.1 nm) surpassing that of AgC6H8N3O3 (0.212@546.1 nm), placing it among the highest recorded values within metal-pyridine incorporating nitrate complexes. The nonconventional orientation of π-conjugated [NO3-] ions contributes to this phenomenon, enhancing the action of free π-conjugated orbitals. This design strategy for micromodulating the alignment of the π-conjugated system promises to be an effective approach for enhancing optical properties, such as birefringence.

2.
Inorg Chem ; 62(30): 12058-12066, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37470154

ABSTRACT

Two positional isomers, 4-amino-3-methylpyridine and 3-amino-5-methylpyridine, produce 4-amino-3-methylpyridinium and 5-methylpyridin-3-aminium, respectively, under acidic conditions. The two protonated isomers create different hydrogen bonding networks, resulting in different coordination environments of the [MnX4]2- unit embedded in molecular compounds such as 4-amino-3-methylpyridinium manganese bromide, [(C6H9N2)2MnBr4] and 5-methylpyridin-3-aminium manganese bromide, [(C6H9N2)4MnBr4(H2O)·(MnBr4)]. Both compounds can be prepared using the slow evaporation method or mechanochemical synthetic procedures. Single-crystal structure analysis of [(C6H9N2)2MnBr4] and [(C6H9N2)4MnBr4(H2O)·(MnBr4)] revealed different manganese halide units, including tetrahedral and tetrahedral with distorted trigonal bipyramidal structures, which emit photoluminescence in the green (527 nm) and red (607 nm) regions, respectively. Electronic structure calculations were conducted to support the validity and interpretation of the UV-vis and photoluminescence (PL) spectral data. Thin films deposited using the [(C6H9N2)2MnBr4] precursor also exhibit PL properties. The diverse pseudo-three-dimensional networks can be constructed by using positional isomers with different hydrogen bonding pathways and π-π stacking of organic units, in which the design strategy successfully enables the tuning of various optical properties.

3.
Inorg Chem ; 62(26): 10141-10151, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37343078

ABSTRACT

A series of Yb-substituted Zintl phases in the Ca3-xYbxAlSb3 (0 ≤ x ≤ 0.81(1)) system has been synthesized by initial arc melting and post-heat treatment, and their isotypic crystal structures were characterized by both powder and single crystal X-ray diffraction analysis. All four title compounds adopted the Ca3AlAs3-type structure (space group Pnma, Pearson code oP28, Z = 4). The overall structure can be described as a combination of the 1-dimensional (1D) infinite chain of ∞1[Al(Sb2Sb2/2)] formed by two vertices sharing [AlSb4] tetrahedral moieties and three Ca2+/Yb2+ mixed sites located in between these 1D chains. The charge balance and the resultant independency of the 1D chains in the title system were explained by the Zintl-Klemm formalism [Ca2+/Yb2+]3[(4b-Al1-)(1b-Sb2-)2(2b-Sb1-)2/2]. A series of DFT calculations proved that (1) the band overlap between the d-orbital states from two types of cations and the p-orbital states from Sb at the high symmetry Γ point implied a heavily doped degenerate semiconducting behavior of the quaternary Ca2YbAlSb3 model and (2) the site preference of Yb for the M1 site was due to the electronic-factor criterion based on the Q values of each atomic site. The electron localization function calculations also proved that the two different shapes of lone pairs of the Sb atoms─the "umbrella-shape" and the "C-shape"─are determined by local geometry and the coordination environment on the anionic frameworks. Thermoelectric measurements of the quaternary title compound Ca2.19(1)Yb0.81AlSb3 showed an approximately two times larger ZT value than that of ternary Ca3AlSb3 at 623 K due to increased electrical conductivity and ultralow thermal conductivity originated from Yb substitution for Ca.

4.
Small ; 19(19): e2207709, 2023 May.
Article in English | MEDLINE | ID: mdl-36759968

ABSTRACT

Establishing high performance ultraviolet (UV) nonlinear optical (NLO) selenite crystals with well-balanced properties is very challenging attributable to their strong absorption for UV light. Here a rare-earth selenite, Sc(HSeO3 )3 , with excellent UV NLO properties is introduced. Sc(HSeO3 )3 crystallizing in the polar NCS space group, Cc, features a 3D archetiture built up by interconnected ScO6 octahedra and HSeO3 groups. The crystal exhibits remarkably well-balanced UV-NLO functionality, namely, the shortest absorption edge (214 nm) among NLO-active selenites, wide bandgap (5.28 eV), large phase-matchable SHG response (5 × KDP), and sufficiently large birefringence (cal. 0.105 @1064 nm). Detailed DFT calculations have been performed to elucidate the structure-property relationships. This work provides a new example of discovering novel UV NLO selenite materials.

5.
ACS Nano ; 12(7): 6997-7008, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29901981

ABSTRACT

Rhodium nanoparticles are promising transition metal nanocatalysts for electrochemical and synthetic organic chemistry applications. However, notwithstanding their potential, to date, Rh nanoparticles have not been utilized for biological applications; there has been no cytotoxicity study of Rh reported in the literature. In this regard, the absence of a facile and controllable synthetic strategy of Rh nanostructures with various sizes and morphologies might be responsible for the lack of progress in this field. Herein, we have developed a synthetic strategy for Rh nanostructures with controllable morphology through an inverse-directional galvanic replacement reaction. Three types of Rh-based nanostructures-nanoshells, nanoframes, and porous nanoplates-were successfully synthesized. A plausible synthetic mechanism based on thermodynamic considerations has also been proposed. The cytotoxicity, surface functionalization, and photothermal therapeutic effect of manufactured Rh nanostructures were systematically investigated to reveal their potential for in vitro and in vivo biological applications. Considering the comparable behavior of porous Rh nanoplates to that of gold nanostructures that are widely used in nanomedicine, the present study introduces Rh-based nanostructures into the field of biological research.


Subject(s)
Antineoplastic Agents/pharmacology , Metal Nanoparticles/chemistry , Photochemotherapy , Photosensitizing Agents/pharmacology , Rhodium/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Particle Size , Photosensitizing Agents/chemistry , Rhodium/chemistry , Surface Properties
6.
ACS Appl Mater Interfaces ; 10(16): 13819-13828, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29608263

ABSTRACT

Gold nanomaterials are commonly used in biomedical applications owing to their excellent biocompatibility and unique physicochemical and optical properties, whereas Pd nanomaterials are mainly used as catalysts. Here, we re-examined the possible applications of Pd nanomaterials. Reducing agent-assisted excessive galvanic replacement-mediated porous Au nanoplates, porous Pt nanoplates, and porous Pd nanoplate synthesis enabled us to compare the properties and efficiency of nanoplates composed of three metal elements (Au, Pt, and Pd). According to our analytical results, porous Pd nanoplates exhibited exceptional all-round excellence in photothermal conversion, therapeutic gene loading/releasing, cytotoxicity, and in vitro combination cancer treatment. We believe that this discovery broadens the potential applications of metal nanomaterials, with an emphasis on more efficient biomedical applications in limited conventional fields.


Subject(s)
Metal Nanoparticles , Combined Modality Therapy , Gold , Nanostructures , Porosity
7.
Adv Healthc Mater ; 4(12): 1833-40, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26085286

ABSTRACT

Herein, hybrid nanocomposite of praseodymium doped TiO2 nanocrystals and graphene oxide nanosheets are prepared by facile hydrothermal treatment. As-synthesized Pr-TiO2 /NGO hybrid nanocomposite exhibits enhanced photocatalytic activity under visible light irradiation by the intact graphene oxide and doped lanthanide mediated band gap narrowing compared to TiO2 . Moreover, high payload and controlled release of doxorubicin by charge reversal of hybrid nanocomposite at endosomal pH and near-infrared irradiation mediated efficient photothermal conversion provide highly favorable features in therapeutic applications. Through the combination of these three distinctive therapeutic modalities, highly efficient trimodal cancer cell ablation is demonstrated.


Subject(s)
Delayed-Action Preparations , Doxorubicin/pharmacology , Nanocomposites/chemistry , Titanium/chemistry , Cell Survival/drug effects , Cell Survival/radiation effects , Graphite/chemistry , HeLa Cells , Humans , Hydrogen-Ion Concentration , Light , Nanoparticles/chemistry , Phototherapy
8.
Chemistry ; 19(51): 17432-8, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24318268

ABSTRACT

Two different 3D porous metal-organic frameworks, [Zn4O(NTN)2]·10DMA·7H2O (SNU-150) and [Zn5(NTN)4(DEF)2][NH2(C2H5)2]2·8DEF·6H2O (SNU-151), are synthesized from the same metal and organic building blocks but in different solvent systems, specifically, in the absence and the presence of a small amount of acid. SNU-150 is a doubly interpenetrated neutral framework, whereas SNU-151 is a non-interpenetrated anionic framework containing diethylammonium cations in the pores. Comparisons of the N2, H2, CO2, and CH4 gas adsorption capacities as well as the CO2 adsorption selectivity over N2 and CH4 in desolvated SNU-150' (BET: 1852 m(2) g(-1)) and SNU-151' (BET: 1563 m(2) g(-1)) samples demonstrate that the charged framework is superior to the neutral framework for gas storage and gas separation, despite its smaller surface area and different framework structure.

9.
Inorg Chem ; 48(17): 8376-82, 2009 Sep 07.
Article in English | MEDLINE | ID: mdl-19715372

ABSTRACT

A new organically templated noncentrosymmetric polar zinc chloride, [N(CH(3))(4)]ZnCl(3), has been synthesized hydrothermally, and the structure was determined by single crystal X-ray diffraction. The reported material exhibits a unidimensional crystal structure consisting of chains of anionic ZnCl(4) tetrahedra that are separated by [N(CH(3))(4)](+) cations. Second-harmonic generation (SHG) measurement on the noncentrosymmetric [N(CH(3))(4)]ZnCl(3), using 1064 nm radiation, indicate the material has a SHG efficiency of approximately 15 x alpha-SiO(2). Additional SHG measurements indicate the material is nonphase-matchable (type 1). In addition, converse piezoelectric measurements revealed d(33) values of 10 pm/V. Thermogravimetric analysis, UV-vis diffuse reflectance, and infrared spectroscopy were also performed, as were electronic structure calculations. Crystal data: [N(CH(3))(4)]ZnCl(3), orthorhombic, space group Pmc2(1) (No. 26), with a = 7.2350(14) A, b = 8.8210(18) A, c = 15.303(3) A, V = 976.6(3) A(3), and Z = 4.

SELECTION OF CITATIONS
SEARCH DETAIL
...