Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(4): 292, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658527

ABSTRACT

Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.


Subject(s)
Activins , Angiogenesis Inhibitors , Bevacizumab , Drug Resistance, Neoplasm , Glioblastoma , Inhibitor of Differentiation Protein 1 , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/blood supply , Humans , Animals , Inhibitor of Differentiation Protein 1/metabolism , Inhibitor of Differentiation Protein 1/genetics , Mice , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Activins/metabolism , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Mice, Nude , Apoptosis/drug effects
2.
BMC Biol ; 22(1): 23, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38287397

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is more difficult to treat than other intractable adult tumors. The main reason that GBM is so difficult to treat is that it is highly infiltrative. Migrasomes are newly discovered membrane structures observed in migrating cells. Thus, they can be generated from GBM cells that have the ability to migrate along the brain parenchyma. However, the function of migrasomes has not yet been elucidated in GBM cells. RESULTS: Here, we describe the composition and function of migrasomes generated along with GBM cell migration. Proteomic analysis revealed that LC3B-positive autophagosomes were abundant in the migrasomes of GBM cells. An increased number of migrasomes was observed following treatment with chloroquine (CQ) or inhibition of the expression of STX17 and SNAP29, which are involved in autophagosome/lysosome fusion. Furthermore, depletion of ITGA5 or TSPAN4 did not relieve endoplasmic reticulum (ER) stress in cells, resulting in cell death. CONCLUSIONS: Taken together, our study suggests that increasing the number of autophagosomes, through inhibition of autophagosome/lysosome fusion, generates migrasomes that have the capacity to alleviate cellular stress.


Subject(s)
Autophagosomes , Glioblastoma , Humans , Autophagosomes/metabolism , Glioblastoma/metabolism , Autophagy , Proteomics , Lysosomes/metabolism , Endoplasmic Reticulum Stress
3.
Biomater Sci ; 11(16): 5490-5501, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37367827

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the digestive tract that causes pain and weight loss and also increases the risk of colon cancer. Inspired by the benefits of plant-derived nanovesicles and aloe, we herein report aloe-derived nanovesicles, including aloe vera-derived nanovesicles (VNVs), aloe arborescens-derived nanovesicles (ANVs), and aloe saponaria-derived nanovesicles (SNVs) and evaluate their therapeutic potential and molecular mechanisms in a dextran sulfate sodium (DSS)-induced acute experimental colitis mouse model. Aloe-derived nanovesicles not only facilitate markedly reduced DSS-induced acute colonic inflammation, but also enable the restoration of tight junction (TJ) and adherent junction (AJ) proteins to prevent gut permeability in DSS-induced acute colonic injury. These therapeutic effects are ascribed to the anti-inflammatory and anti-oxidant effects of aloe-derived nanovesicles. Therefore, aloe-derived nanovesicles are a safe treatment option for IBD.


Subject(s)
Aloe , Colitis , Inflammatory Bowel Diseases , Mice , Animals , Aloe/metabolism , Tight Junction Proteins/metabolism , Colitis/chemically induced , Colitis/drug therapy , Inflammation/drug therapy , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/chemically induced , Disease Models, Animal , Dextran Sulfate , Mice, Inbred C57BL
4.
Cell Rep ; 41(8): 111626, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36417870

ABSTRACT

Jagged1 (JAG1) is a Notch ligand that contact-dependently activates Notch receptors and regulates cancer progression. The JAG1 intracellular domain (JICD1) is generated from JAG1, like formation of the NOTCH1 intracellular domain (NICD1); however, the role of JICD1 in tumorigenicity has not been comprehensively elucidated. Here we show that JICD1 induces astrocytes to acquire several cancer stem cell properties, including tumor formation, invasiveness, stemness, and resistance to anticancer therapy. The transcriptome, chromatin immunoprecipitation sequencing (ChIP-seq), and proteomics analyses show that JICD1 increases SOX2 expression by forming a transcriptional complex with DDX17, SMAD3, and TGIF2. JICD1-driven tumorigenicity is directly regulated by SOX2. Our results demonstrate that, like NICD1, JICD1 acts as a transcriptional cofactor in formation of the DDX17/SMAD3/TGIF2 transcriptional complex, leading to oncogenic transformation.


Subject(s)
Receptors, Notch , Signal Transduction , Signal Transduction/physiology , Receptors, Notch/metabolism , Oncogenes , Neoplastic Stem Cells/metabolism , Protein Binding
5.
Oncol Lett ; 24(5): 413, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36245828

ABSTRACT

Anti-angiogenesis therapy, a promising remedy against tumor progression, is now widely used to treat numerous types of cancer. Since vascular endothelial growth factor (VEGF) is the most vital factor in angiogenesis, most anti-angiogenesis drugs target the VEGF-related pathway. However, in glioblastoma (GBM), the therapeutic strategy involving the inhibition of VEGF signaling is ineffective. The present study demonstrated that the potential angiogenic function of endothelin-1 (EDN1) was upregulated by inhibitor of differentiation 1 (ID1) independent of VEGF during tumor angiogenesis. Anatomic structure transcriptomes of patients with GBM revealed that the expression levels of ID1 and EDN1 were specifically upregulated in the vascular-related region. The aortic ring assay and endothelial sprouting assay demonstrated that EDN1 more potently promoted endothelial sprouting ability than VEGF. The activity of EDN1 was induced by endothelin receptor, which seemed to mediate regulation via positive feedback. Finally, in patients with GBM who did not respond to bevacizumab, a VEGF antagonist, EDN1 expression was higher than that in bevacizumab responders. Collectively, the present study demonstrated that EDN1 is a potent angiogenic factor inducing endothelial sprouting and may be a novel target for inhibiting glioma angiogenesis.

6.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077356

ABSTRACT

Hemp (Cannabis sativa L.) is used for medicinal purposes owing to its anti-inflammatory and antioxidant activities. We evaluated the protective effect of nanovesicles isolated from hemp plant parts (root, seed, hemp sprout, and leaf) in dextran sulfate sodium (DSS)-induced colitis in mice. The particle sizes of root-derived nanovesicles (RNVs), seed-derived nanovesicles (SNVs), hemp sprout-derived nanovesicles (HSNVs), and leaf-derived nanovesicles (LNVs) were within the range of 100-200 nm as measured by nanoparticle tracking analysis. Acute colitis was induced in C57BL/N mice by 5% DSS in water provided for 7 days. RNVs were administered orally once a day, leading to the recovery of both the small intestine and colon lengths. RNVs, SNVs, and HSNVs restored the tight (ZO-1, claudin-4, occludin) and adherent junctions (E-cadherin and α-tubulin) in DSS-induced small intestine and colon injury. Additionally, RNVs markedly reduced NF-κB activation and oxidative stress proteins in DSS-induced small intestine and colon injury. Tight junction protein expression and epithelial cell permeability were elevated in RNV-, SNV-, and HSNV-treated T84 colon cells exposed to 2% DSS. Interestedly, RNVs, SNVs, HSNVs, and LNVs reduced ALT activity and liver regeneration marker proteins in DSS-induced liver injury. These results showed for the first time that hemp-derived nanovesicles (HNVs) exhibited a protective effect on DSS-induced gut leaky and liver injury through the gut-liver axis by inhibiting oxidative stress marker proteins.


Subject(s)
Cannabis , Colitis , Animals , Colitis/chemically induced , Colitis/metabolism , Colon/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Intestinal Mucosa/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Sulfates , Tight Junctions/metabolism
7.
Cells ; 11(13)2022 06 26.
Article in English | MEDLINE | ID: mdl-35805116

ABSTRACT

The oncogenic role of nuclear LIM domain only 2 (LMO2) as a transcriptional regulator is well established, but its function in the cytoplasm is largely unknown. Here, we identified LMO2 as a cytoplasmic activator for signal transducer and activator of transcription 3 (STAT3) signaling in glioma stem cells (GSCs) through biochemical and bioinformatics analyses. LMO2 increases STAT3 phosphorylation by interacting with glycoprotein 130 (gp130) and Janus kinases (JAKs). LMO2-driven activation of STAT3 signaling requires the LDB1 protein and leads to increased expression of an inhibitor of differentiation 1 (ID1), a master regulator of cancer stemness. Our findings indicate that the cytoplasmic LMO2-LDB1 complex plays a crucial role in the activation of the GSC signaling cascade via interaction with gp130 and JAK1/2. Thus, LMO2-LDB1 is a bona fide oncogenic protein complex that activates either the JAK-STAT signaling cascade in the cytoplasm or direct transcriptional regulation in the nucleus.


Subject(s)
Glioma , STAT3 Transcription Factor , Adaptor Proteins, Signal Transducing , Cytokine Receptor gp130/metabolism , Cytoplasm/metabolism , DNA-Binding Proteins/metabolism , Glioma/genetics , Glioma/metabolism , Glycoproteins/metabolism , Humans , Janus Kinases/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , LIM-Homeodomain Proteins/metabolism , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins/metabolism , STAT3 Transcription Factor/metabolism , Transcription Factors/metabolism
8.
Mol Nutr Food Res ; 66(13): e2101049, 2022 07.
Article in English | MEDLINE | ID: mdl-35476900

ABSTRACT

SCOPE: Inflammatory bowel disease (IBD), including ulcerative colitis (UC), is a chronic recurrent inflammatory disease of the digestive tract and increases the risk of colon cancer. METHOD AND RESULTS: This study evaluates the effects of dietary intervention with freeze-dried plum (FDP), a natural antioxidant and anti-inflammatory fruit with no toxicity on dextran sulfate sodium (DSS)-induced acute and chronic experimental colitis in a mouse model and studies the molecular mechanisms of protection through the gut-liver axis. The results show that FDP decreases the levels of inflammatory mediators, which is a nitrative stress biomarker in both acute and chronic models. FDP markedly reduces DSS-induced injury to the colonic epithelium in both acute and chronic models. In addition, FDP significantly decreases the levels of pro-oxidant markers such as CYP2E1, iNOS, and nitrated proteins (detected by anti-3-NT antibody) in DSS-induced acute and chronic colonic injury models. Furthermore, FDP markedly reduces markers of liver injury such as serum ALT/AST, antioxidant markers, and inflammatory mediators in DSS-induced acute and chronic colonic injury. CONCLUSION: These results demonstrate that the FDP exhibits a protective effect on DSS-induced acute and chronic colonic and liver injury through the gut-liver axis via antioxidant and anti-inflammatory properties.


Subject(s)
Colitis , Prunus domestica , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon/metabolism , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Inflammation/metabolism , Inflammation Mediators/metabolism , Mice
9.
FASEB J ; 35(10): e21906, 2021 10.
Article in English | MEDLINE | ID: mdl-34490940

ABSTRACT

Glioblastoma (GBM) is a refractory disease that has a highly infiltrative characteristic. Over the past decade, GBM perivascular niche (PVN) has been described as a route of dissemination. Here, we investigated that trailed membrane structures, namely retraction fibers (RFs), are formed by perivascular extracellular matrix (ECM) proteins. By using the anatomical GBM database, we validated that the ECM-related genes were highly expressed in the cells within the PVN where fibronectin (FN) induced RF formation. By disrupting candidates of FN-binding integrins, integrin α5ß1 was identified as the main regulator of RF formation. De novo RFs were produced at the trailing edge, and focal adhesions were actively localized in RFs, indicating that adhesive force makes RFs remain at the bottom surface. Furthermore, we observed that GBM cells more frequently migrated along the residual RFs formed by preceding cells in microfluidic channels in comparison to those in the channels without RFs, suggesting that the infiltrative characteristics GBM could be attributed to RFs formed by the preceding cells in concert with chemoattractant cues. Altogether, we demonstrated that shedding membrane structures of GBM cells are maintained by FN-integrin α5ß1 interaction and promoted their motility .


Subject(s)
Brain Neoplasms/metabolism , Cell Movement , Fibronectins/metabolism , Glioblastoma/metabolism , Neoplasm Proteins/metabolism , Receptors, Vitronectin/metabolism , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Glioblastoma/pathology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude
10.
Oncol Lett ; 20(2): 1153-1162, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32724355

ABSTRACT

Glioblastoma (GBM) is the most aggressive and malignant brain tumor, resulting in a poor prognosis. The current therapy for GBM consists in concurrent radiation and chemotherapy following removal of the tumor. Although the therapy prolongs patient survival, recurrence often occurs. The major cause of tumor recurrence is thought to be GBM stem cells (GSCs), which aid the development of chemo-radiotherapy resistance, and can self-renew and aberrantly differentiate. Therefore, GSCs should be targeted to eradicate the tumor and prevent recurrence. Transcriptomic analysis has categorized GBM into proneural (PN), mesenchymal and classical subtypes, and the outcome of recurrence and prognosis markedly depends on subtype. To identify specific GSC markers, the present study analyzed public microarray and RNA-seq data and identified dihydropyrimidinase-related protein 5 (DRP5) as a candidate GSC marker. DRP5 is known to mediate semaphorin 3A signaling and is involved in the regulation of neurite outgrowth and axon guidance during neuronal development. In the present study, DRP5 was specifically upregulated in the PN-subtype GSCs and served crucial roles in maintaining GSC properties, including tumor sphere formation, stem cell marker expression and xenograft tumor growth. Furthermore, bioinformatics analysis revealed that DRP5 expression was positively correlated with signatures of stemness, including Notch, Hedgehog and Wnt/ß-catenin expression, which are also known to be positively correlated with PN-subtype gene signatures. Conversely, DRP5 expression was negatively correlated with NF-κB and signal transducer and activator of transcription 3 stemness signatures, which are negatively correlated with PN-subtype gene signatures. Taken together, these findings suggested that DRP5 was specifically expressed in PN-subtype GSCs and may be used as a functional marker of PN-subtype GSCs.

11.
J Ethnopharmacol ; 236: 393-400, 2019 May 23.
Article in English | MEDLINE | ID: mdl-30878548

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Korean Red ginseng extract (RG) is one of the most widely used traditional health functional food in Asia, which invigorates immunity and vital energy. RG have been suggested to inhibit proliferation, invasion, and inflammation in several cancer cell lines. Correspondingly, clinical studies have raised the possibility that RG could augment therapeutic efficacy in cancer patients. However, little is known about the anti-cancer effects of RG in glioblastoma (GBM), the most common and aggressive brain tumor for which effective therapeutic regimens need to be developed. AIM OF THIS STUDY: Here, we assessed the in vivo and in vitro anti-cancer properties of RG in a patient-derived xenograft mouse model and GBM stem cell (GSC) line. MATERIALS AND METHODS: We evaluated the anti-cancer effects of RG in patient-derived GBM xenograft mice with and without combined concurrent chemo- and radiation therapy (CCRT). Furthermore, we verified the in vitro effects of RG on the proliferation, cell death, and stem cell-like self-renewal capacity of cancer cells. Finally, we investigated the signaling pathway affected by RG, via which its anti-cancer effects were mediated. RESULTS: When combined with CCRT, RG impeded GBM progression by reducing cancer cell proliferation and ionized calcium-binding adapter molecule 1 (IBA1)-positive immune cell recruitment. The anti-cancer effects of RG were mediated by Rg3 and Rh2 ginsenosides. Rg3 promoted cell death while Rh2 did not. Furthermore, both Rg3 and Rh2 reduced cell viability and self-renewal capacity of GSCs by inhibiting Wnt/ß-catenin signaling. CONCLUSION: Therefore, our observations imply that RG could be applied to the GBM patients in parallel with CCRT to enhance therapeutic efficacy.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Panax/chemistry , Plant Extracts/pharmacology , Adult , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/therapeutic use , Brain/cytology , Brain/pathology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Glioblastoma/pathology , Humans , Medicine, Korean Traditional , Mice , Neoplastic Stem Cells , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays
12.
Mol Cells ; 42(2): 135-142, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30622231

ABSTRACT

OCT4, also known as POU5F1 (POU domain class 5 transcription factor 1), is a transcription factor that acts as a master regulator of pluripotency in embryonic stem cells and is one of the reprogramming factors required for generating induced pluripotent stem cells. The human OCT4 encodes three isoforms, OCT4A, OCT4B, and OCT4B1, which are generated by alternative splicing. Currently, the functions and expression patterns of OCT4B remain largely unknown in malignancies, especially in human glioblastomas. Here, we demonstrated the function of OCT4B in human glioblastomas. Among the isoform of OCT4B, OCT4B-190 (OCT4B19kDa) was highly expressed in human glioblastoma stem cells and glioblastoma cells and was mainly detected in the cytoplasm rather than the nucleus. Overexpression of OCT4B19kDa promoted colony formation of glioblastoma cells when grown in soft agar culture conditions. Clinical data analysis revealed that patients with gliomas that expressed OCT4B at high levels had a poorer prognosis than patients with gliomas that expressed OCT4B at low levels. Thus, OCT4B19kDa may play a crucial role in regulating cancer cell survival and adaption in a rigid environment.


Subject(s)
Glioblastoma/metabolism , Glioblastoma/pathology , Octamer Transcription Factor-3/metabolism , Cell Adhesion , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Octamer Transcription Factor-3/chemistry , Octamer Transcription Factor-3/genetics , Prognosis , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Stress, Physiological , Tumor Stem Cell Assay
13.
J Med Food ; 20(9): 838-845, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28792781

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most aggressive and lethal human brain tumors, and the median survival of patients with GBM is only 14 months. Glioblastoma stem cells (GSCs) are regarded as a main cause of GBM recurrence, because of their self-renewal and drug resistance properties. Therefore, targeting GSCs is an important therapeutic strategy for GBM. In this study, we show the effects of BRM270, a compound from natural plant extracts, on GSCs in vitro and GBM recurrence in vivo. BRM270 induced apoptotic cell death and inhibited cell growth and "stemness" both in vitro and in vivo. Combining BRM270 treatment with concurrent chemoradiotherapy (CCRT) dramatically increased mice survival and tumor growth inhibition. Taken together, our results suggested that BRM270 synergizes with CCRT as a therapeutic agent to target GSCs.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Brain Neoplasms/drug therapy , Cell Proliferation/drug effects , Glioblastoma/drug therapy , Neoplastic Stem Cells/cytology , Plant Extracts/administration & dosage , Animals , Apoptosis/drug effects , Brain Neoplasms/physiopathology , Brain Neoplasms/radiotherapy , Cell Proliferation/radiation effects , Chemoradiotherapy , Combined Modality Therapy , Glioblastoma/physiopathology , Glioblastoma/radiotherapy , Humans , Mice , Mice, Nude , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/radiation effects
14.
Biochem Biophys Res Commun ; 486(2): 564-570, 2017 04 29.
Article in English | MEDLINE | ID: mdl-28327358

ABSTRACT

Most cancer-related signaling pathways sustain their active or inactive status via genetic mutations or various regulatory mechanisms. Previously, we demonstrated that platelet-derived growth factor (PDGF) activates Notch signaling through nitric oxide (NO)-signaling-driven activation of inhibitor of differentiation 4 (ID4) in glioblastoma (GBM) stem cells (GSCs) and endothelial cells in the vascular niche of GBM, leading to maintenance of GSC traits and GBM progression. Here, we determined that the PDGF-NO-ID4-signaling axis is constantly activated through a positive regulatory circuit. ID4 expression significantly increased PDGF subunit B expression in both in vitro cultures and in vivo tumor xenografts and regulated NO synthase 2 (NOS2) expression and NO production by activating PDGF signaling, as well as that of its receptor (PDGFR). Additionally, ectopic expression of PDGFRα, NOS2, or ID4 activated the PDGF-NO-ID4-signaling circuit and enhanced the self-renewal of GBM cell lines. These results suggested that the positive regulatory circuit associated with PDGF-NO-ID4 signaling plays a pivotal role in regulating the self-renewal and tumor-initiating capacity of GSCs and might provide a promising therapeutic target for GBM.


Subject(s)
Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Inhibitor of Differentiation Proteins/genetics , Proto-Oncogene Proteins c-sis/genetics , Signal Transduction/genetics , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Genes, Reporter , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Inhibitor of Differentiation Proteins/metabolism , Luciferases/genetics , Luciferases/metabolism , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Neoplastic Stem Cells , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Proto-Oncogene Proteins c-sis/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism
15.
DNA Cell Biol ; 33(3): 128-35, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24387300

ABSTRACT

Exposure to microgravity is supposed to affect almost all biological systems, and we speculated that microgravity is potentially involved in autophagy regulation. A clinostat was used to simulate microgravity, and HEK293 cells that stably express GFP-LC3 were used for sensitive monitoring of autophagy induction. The clinorotation of GFP-LC3 cells resulted in autophagosome formation in the cytoplasm and a change in autophagosomal marker expression. Autophagy induction was accompanied by phosphorylation of AMPK (Thr 172) and by the dephosphorylation of mammalian target of rapamycin. To elucidate the role of AMPK in microgravity-induced autophagy, we suppressed AMPK expression by knockdown via siRNA, which inhibited the induction of autophagy upon exposure to microgravity. In addition, the clinorotation of C2C12 myotube cells resulted in the enlarged and distinctive LC3 spots in the cytoplasm and AMPK activation. These results indicate that simulated microgravity possibly contributes to autophagy induction by regulating AMPK.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy , Weightlessness , Enzyme Activation , HEK293 Cells , Humans , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
16.
Langmuir ; 23(4): 2184-90, 2007 Feb 13.
Article in English | MEDLINE | ID: mdl-17279712

ABSTRACT

We introduce a new and facile process, corona discharge coating (CDC), to fabricate thin polymer films of the immiscible poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) and poly(methyl methacrylate) (PMMA) blends. The method is based on utilizing directional electric flow, known as electric wind, of the charged unipolar particles generated by corona discharge between a metallic needle and a bottom plate under high electric field (5-10 kV/cm). The electric flow rapidly spreads out the polymer solution on the bottom plate and subsequently forms a smooth and flat thin film over a large area within a few seconds. The method is found to be effective for fabricating uniform thin polymer films with areas larger than approximately 30 mm2. The thin films obtained by CDC exhibit unique microstructures where well-defined spherical and cylindrical domains of approximately 50 nm in diameter coexist. These nanosized domains are found to be much smaller than those in films made by conventional spin coating, which suggests that CDC is beneficial for fabricating phase-separated thin film structures with significantly increased interfacial areas. The effects of the applied voltage, tip-to-plate distance, and substrates on the film formation as well as the resulting microstructure are investigated. Furthermore, the light emitting performance of a device prepared by CDC is compared with one made by spin coating.

17.
J Phys Chem B ; 109(22): 11354-60, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-16852387

ABSTRACT

The tin oxide and silicon oxide films have been deposited on polycarbonate substrates as gas barrier films, using a thermal evaporation and ion beam assisted deposition process. The oxide films deposited by ion beam assisted deposition show a much lower water vapor transmission rate than those by thermal evaporation. The tin oxide films show a similar water vapor transmission rate to the silicon oxide films in thermal evaporation but a lower water vapor transmission rate in IBAD. These results are related to the fact that the permeation of water vapor with a large dipole moment is affected by the chemistry of oxides and the packing density of the oxide films. The permeation mechanism of water vapor through the oxide films is discussed in terms of the chemical interaction with water vapor and the microstructure of the oxide films. The chemical interaction of water vapor with oxide films has been investigated by the refractive index from ellipsometry and the OH group peak from X-ray photoelectron spectroscopy, and the microstructure of the composite oxide films was characterized using atomic force microscopy and a transmission electron microscope. The activation energy for water vapor permeation through the oxide films has also been measured in relation to the permeation mechanism of water vapor. The diffusivity of water vapor for the tin oxide films has been calculated from the time lag plot, and its implications are discussed.


Subject(s)
Membranes, Artificial , Oxides/chemistry , Water/chemistry , Algorithms , Chemical Phenomena , Chemistry, Physical , Copper/chemistry , Diffusion , Permeability , Refractometry , Silicon Dioxide/chemistry , Spectrophotometry, Ultraviolet , Tin Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...