Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 50(9): 4047-53, 2011 May 02.
Article in English | MEDLINE | ID: mdl-21462954

ABSTRACT

The addition of halide anions (X' = Cl(-), Br(-), or I(-)) to perhalocyclohexasilane Si(6)X(12) (X = Cl or Br) led to the formation of complexes comprising [Si(6)X(12)X'(2)](2-) dianions. An upfield shift in the (29)Si NMR spectra was noted upon coordination, and structural determination by X-ray crystallography showed that the dianions adopt an "inverse sandwich" structure where the six cyclic silicon atoms form a planar hexagon with the two halide anions X' located on the 6-fold axis equally disposed above and below the plane of the Si(6) ring. Additionally, these apical X' atoms are within the van der Waals bonding distance to the silicon ring atoms, indicating a strong interaction between X' and silicon atoms. These results detail crystallographic variations within the halogen series providing further insight into the nature of the Lewis acid sites above and below the Si(6)X(12) ring, where interactions with hard Lewis bases such as halide anions are observed. Interestingly, the stereochemistry of the silicon atoms in [Si(6)X(12)X'(2)](2-) is not affected much by the size or electronegativity of the halogen atoms.

2.
J Phys Chem B ; 110(51): 26180-4, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181273

ABSTRACT

We compare the electronic structure of two metal-centered tetramethyldibenzo-tetraazaannulene (TMTAA) macrocyclic complex molecules: 5,7,12,14- tetramethyl-2,3:9,10-dibenzo[b,i]-1,4,8,11-tetraazacyclotetradecine nickel (II) and 5,7,12,14-tetramethyl-2,3:9,10-dibenzo[b,i]-1,4,8,11-tetraazacyclotetradecine cobalt (II). The experimental gap between the highest occupied molecular orbital to the lowest unoccupied molecular orbital for both molecules, obtained from combined ultraviolet photoemission and inverse photoemission studies, is close to the value of 6.6 eV expected from simple model calculations, but with the Fermi level placed closer to the lowest unoccupied molecular orbital. While both the Co(II) (s = 1/2) and Ni(II) (s = 0) TMTAA molecular electronic structures are very similar, the Ni(II) adopts a high-symmetry molecular configuration upon adsorption, with a strong preferential orientation.

3.
Water Res ; 40(4): 692-8, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16427116

ABSTRACT

This research investigates the effect of adding oxidants such as Fe0, Fe2+ and S2O8(2-) in the sonication of 1,4-dioxane (1,4-D). The results indicate that the degradation pattern of 1,4-D kinetically could be divided into three steps (initiation, acceleration, and stabilization), with the first two steps predominating. The initiation step agreed with zero order rate model, while the acceleration step was the pseudo-first order. In the presence of HCO3- as a radical scavenger, the degradations of 1,4-D and TOC were suppressed, indicating that OH radical is an important factor in the sonolysis, especially at the acceleration step. The overall degradation efficiency of 79.0% in the sonolysis of 1,4-D was achieved within 200 min. While Fe0, Fe2+ and S2O8(2-) were individually combined with sonication, the total degradation efficiency of 1,4-D increased 18.6%, 19.1% and 16.5% after 200 min, respectively. The addition of oxidants not only increased the rate constant in the acceleration step, but also changed the kinetic model from zero to pseudo-first order at the initiation step. The addition of oxidants such as Fe2+, Fe0 and S2O8(2-) in the sonication of 1,4-D also improved the mineralization of 1,4-D. However, the degradation efficiencies of 1,4-D and TOC were not statistically different (p = 0.709, ANOVA) with different oxidants such as Fe2+, Fe0 and S2O8(2-).


Subject(s)
Dioxanes/metabolism , Oxidants/chemistry , Water Purification/methods , Ferric Compounds/chemistry , Iron/chemistry , Kinetics , Sonication
4.
Biofouling ; 20(4-5): 227-36, 2004.
Article in English | MEDLINE | ID: mdl-15621644

ABSTRACT

The preparation of biocide-incorporated silicone coatings for antifouling/fouling release applications is described. The biocide Triclosan (5-chloro-2-(2, 4-dichlorophenoxy) phenol) was modified with alkenyl moieties and incorporated into a silicone backbone through covalent bonds. The presence of the biocide on the coating surface was expected to deter fouling organisms from attaching to the surface of the coating. Allyl glycidyl ether was used to provide crosslink functionalities. Resins were cured using vinyl-terminated polydimethylsiloxane for hydrosilyl functionality and 1, 3-cyclohexane-bis (methylamine) for epoxy crosslinking functionality. Coatings were characterized by static water contact angle measurements and dynamic mechanical thermal analysis. Synthetic control over the incorporation of crosslink functionalities within the polymer resin allowed tuning of the surface of the coating and of mechanical properties. Resistance to macrofouling was tested by static immersion tests in the Indian River Lagoon at the Florida Institute of Technology from 15 October 2003 to 13 November 2003. Preliminary results showed that the coatings prepared from biocide-incorporated silicones with the appropriate bulk modulus significantly reduced macrofouling.


Subject(s)
Anti-Bacterial Agents/toxicity , Biofilms/drug effects , Silicones/chemistry , Triclosan/toxicity , Allyl Compounds/chemistry , Anti-Bacterial Agents/chemistry , Chemistry Techniques, Analytical/methods , Epoxy Compounds , Epoxy Resins , Fresh Water , Magnetic Resonance Spectroscopy , Polymers/chemistry , Triclosan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...