Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Biomed Eng Lett ; 14(4): 755-764, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946811

ABSTRACT

The corneal endothelial transplantation involves the transfer and attachment of a single-layered corneal endothelial tissue to the narrow space between the cornea and iris. Given the high risk of damage to the endothelial tissue and surrounding corneal tissues when using sharp instruments inserted externally to apply force during the process, the development of a device capable of transferring corneal endothelial tissue using a magnetic field became necessary. This study aims to develop a magnetic control device for transferring corneal endothelial tissue with attached magnetic particles to the transplant site, validate its appropriate transfer capabilities, and assess its applicability to corneal endothelial transplantation. For this purpose, a magnetic field-generating manipulation device equipped with four electromagnets controlled by a joystick and microcomputer was developed. Through simulated experiments, the strength of the magnetic field and the attraction force on the tissue were predicted, and the actual magnetic field strength was measured for validation. To measure the magnetic transfer force, experiments were conducted by towing corneal endothelial tissue fixed with 6 mg, 12 mg, and 18 mg plastic weights. Subsequently, the tissue's transfer speed was measured after applying continuous and pulsed magnetic fields. The results confirmed the feasibility of tissue transfer using the magnetic control device, and it was observed that pulsed magnetic fields led to faster transfer speeds and easier control compared to continuous magnetic fields. Exploratory animal experiments using rabbits were conducted to simulate real surgical conditions, confirming the feasibility of corneal endothelial tissue transfer and attachment.

2.
Biomed Eng Lett ; 13(4): 681-688, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872990

ABSTRACT

Extracorporeal membrane oxygenation device is a procedure in which mechanical systems circulate blood and supply oxygen to patients with impaired cardiopulmonary function. Current venoarterial systems are associated with low patient survival rates and new treatments are needed to avoid left ventricular dilation, which is a major cause of death. In this study, a new mobile pulsatile ECMO with a pump structure that supplies pulsatile flow by using an oxygen tank as a power source is proposed. In vitro experiments conducted under mock circulation system as like patient conditions demonstrated that 2.8 L oxygen can sustain the outflow of 1 L/min of pulsatile blood flow for 53 min, while a 4.6 L tank was able to sustain the same flow for 85 min. The energy equivalent pressure evaluation index of the pulsatile blood pump shows that the mobile pulsatile ECMO could supply sufficient pulsatile blood flow compared to the existing pulsatile ECMO. Through in vitro experiments performed under mock circulation conditions, this new system was proven to supply sufficient oxygen and pulsatile blood flow using the pressure of an oxygen tank even while transporting a patient.

3.
Biomed Eng Lett ; 13(1): 11-19, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36249572

ABSTRACT

Telemedicine data are measured directly by untrained patients, which may cause problems in data reliability. Many deep learning-based studies have been conducted to improve the quality of measurement data. However, they could not provide an accurate basis for judgment. Therefore, this study proposed a deep neural network filter-based reliability evaluation system that could present an accurate basis for judgment and verified its reliability by evaluating photoplethysmography signal and change in data quality according to judgment criteria through clinical trials. In the results, the deviation of 3% or more when the oxygen saturation was judged as normal according to each criterion was 0.3% and 0.82% for criteria 1 and 2, respectively, which was very low compared to the abnormal judgment (3.86%). The deviation of diastolic blood pressure (≥ 10 mmHg) according to criterion 3 was reduced by about 4% in the normal judgment compared to the abnormal. In addition, when multiple judgment conditions were satisfied, abnormal data were better discriminated than when only one criterion was satisfied. Therefore, the basis for judging abnormal data can be presented with the system proposed in this study, and the quality of telemedicine data can be improved according to the judgment result.

4.
Sci Rep ; 12(1): 3133, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210522

ABSTRACT

Photoplethysmography (PPG) is easy to measure and provides important parameters related to heart rate and arrhythmia. However, automated PPG methods have not been developed because of their susceptibility to motion artifacts and differences in waveform characteristics among individuals. With increasing use of telemedicine, there is growing interest in application of deep neural network (DNN) technology for efficient analysis of vast amounts of PPG data. This study is about an algorithm for measuring a patient's PPG and comparing it with their own data stored previously and with the average data of several groups. Six deep neural networks were used to normalize the PPG waveform according to the heart rate by removing uninformative regions from the PPG, distinguishing between heartbeat and reflection pulses, dividing the heartbeat waveform into 10 segments and averaging the values according to each segments. PPG data were measured using telemedicine in both groups. Group 1 consisted of healthy people aged 25 to 35 years, and Group 2 consisted of patients between 60 and 75 years of age taking antihypertensive medications. The proposed algorithm could accurately determine which group the subject belonged with the newly measured PPG data (AUC = 0.998). On the other hand, errors were frequently observed in identification of individuals (AUC = 0.819).


Subject(s)
Heart Rate , Motion , Neural Networks, Computer , Photoplethysmography , Signal Processing, Computer-Assisted , Adult , Female , Humans , Male
5.
Sensors (Basel) ; 21(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34696037

ABSTRACT

Sampling-based PLLs have become a new research trend due to the possibility of removing the frequency divider (FDIV) from the feedback path, where the FDIV increases the contribution of in-band noise by the factor of dividing ratio square (N2). Between two possible sampling methods, sub-sampling and reference-sampling, the latter provides a relatively wide locking range, as the slower input reference signal is sampled with the faster VCO output signal. However, removal of FDIV makes the PLL not feasible to implement fractional-N operation based on varying divider ratios through random sequence generators, such as a Delta-Sigma-Modulator (DSM). To address the above design challenges, we propose a reference-sampling-based calibration-free fractional-N PLL (RSFPLL) with a phase-interpolator-linked sampling clock generator (PSCG). The proposed RSFPLL achieves fractional-N operations through phase-interpolator (PI)-based multi-phase generation instead of a typical frequency divider or digital-to-time converter (DTC). In addition, to alleviate the power burden arising from VCO-rated sampling, a flexible mask window generation method has been used that only passes a few sampling clocks near the point of interest. The prototype PLL system is designed with a 65 nm CMOS process with a chip size of 0.42 mm2. It achieves 322 fs rms jitter, -240.7 dB figure-of-merit (FoM), and -44.06 dBc fractional spurs with 8.17 mW power consumption.

6.
Clin Exp Otorhinolaryngol ; 14(1): 131-136, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32623851

ABSTRACT

OBJECTIVES: Facial nerve monitoring (FNM) can be used to identify the facial nerve, to obtain information regarding its course, and to evaluate its status during parotidectomy. However, there has been disagreement regarding the efficacy of FNM in reducing the incidence of facial nerve palsy during parotid surgery. Therefore, instead of using electromyography (EMG) to identify the location and state of the facial nerve, we applied an intraoperative neuromonitoring (IONM) system using a surface pressure sensor to detect facial muscle twitching. The objective of this study was to investigate the feasibility of using the IONM system with a surface pressure sensor to detect facial muscle twitching during parotidectomy. METHODS: We evaluated the stimulus thresholds for the detection of muscle twitching in the orbicularis oris and orbicularis oculi, as well as the amplitude and latency of EMG and the surface pressure sensor in 13 facial nerves of seven rabbits, using the same stimulus intensity. RESULTS: The surface pressure sensor detected muscle twitching in the orbicularis oris and orbicularis oculi in response to a stimulation of 0.1 mA in all 13 facial nerves. The stimulus threshold did not differ between the surface pressure sensor and EMG. CONCLUSION: The application of IONM using a surface pressure sensor during parotidectomy is noninvasive, reliable, and feasible. Therefore, the IONM system with a surface pressure sensor to measure facial muscle twitching may be an alternative to EMG for verifying the status of the facial nerve.

7.
Anticancer Res ; 40(11): 6295-6303, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33109567

ABSTRACT

BACKGROUND/AIM: The global prevalence of head and neck squamous cell carcinoma (HNSCC) remains high, and its prognosis poor. We investigated the anticancer effects of melatonin in human tongue squamous cell carcinoma cells (SCC-25) and its mechanisms of action. MATERIALS AND METHODS: MTT assay was used to determine cell viability. To assess the effects of melatonin on SCC-25 cell metastasis, we conducted cell formation, wound healing, transwell migration and invasion assay. Western blot analysis was performed to measure the levels of autophage marker proteins. RESULTS: We found that melatonin treatment significantly reduced the viability and colony formation ability of SCC-25 cells, impairing cell migration and invasion. Western blotting assay revealed that melatonin increased the levels of autophagy markers, such as LC-3B and Beclin-1. Consequently, melatonin induces autophage in SCC-25 cells. CONCLUSION: Melatonin may be a promising anticancer agent for the treatment of human tongue squamous cell carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Carcinoma, Squamous Cell/pathology , Melatonin/pharmacology , Tongue Neoplasms/pathology , Apoptosis/drug effects , Cell Extracts , Cell Line, Tumor , Cell Movement/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Humans , Neoplasm Invasiveness , Tumor Stem Cell Assay
8.
Int J Pediatr Otorhinolaryngol ; 138: 110340, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32896754

ABSTRACT

OBJECTIVE: The aim of this study was to find an effective treatment method for preauricular sinus (PAS) in the pediatric population. We also investigated if the prognosis of treatment differed according to the location of the PAS. METHODS: From May 2015 to April 2020, a retrospective chart review was conducted on pediatric patients who underwent surgical excision of PAS at a tertiary referral medical center. Patients were divided into classical and variant groups according to the location of the PAS. The recurrence and postoperative complications, along with the preoperative history, were confirmed through medical chart review. RESULTS: A total of 88 patients (112 ears) were included in the study (n = 77 in the classical group and n = 11 in the variant group). The mean age of the patient was 6.5 years, and there were 48 males and 40 females. To reduce recurrence after surgical treatment, a temporalis muscle fascia anchoring suture was used in combination with preoperative pit dye staining, probe use, and surgical microscopy. The overall recurrence rate was 2.4% (2 cases), and postoperative minor complications were chronic pain (4.5%, n = 4), minor skin inflammation (10.2%, n = 9), and subcutaneous suture knot discomfort (13.6%, n = 12). Between the classical and variant groups, no clinical differences such as recurrence rate or complication rate were found, except for the long hospitalization period in the variant group (p = 0.043). CONCLUSIONS: The use of a temporalis muscle fascia anchoring suture in combination with pit dye staining, probe use, and surgical microscopy in pediatric patients with PAS showed relatively low recurrence and complication rates compared to what has been previously reported in the literature. PAS in the variant position did not affect prognosis.


Subject(s)
Craniofacial Abnormalities/surgery , Suture Techniques , Child , Child, Preschool , Dermatitis/etiology , Facial Muscles , Fascia , Female , Humans , Male , Pain, Postoperative/etiology , Postoperative Complications/etiology , Recurrence , Retrospective Studies , Sutures , Treatment Outcome
9.
Clin Exp Otorhinolaryngol ; 13(3): 291-298, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32668828

ABSTRACT

OBJECTIVES: The loss of signal during intraoperative neuromonitoring (IONM) using electromyography (EMG) in thyroidectomy is one of the biggest problems. We have developed a novel IONM system with an endotracheal tube (ETT) with an attached pressure sensor instead of EMG to detect laryngeal twitching. The aim of the present study was to investigate the feasibility and reliability of this novel IONM system using an ETT with pressure sensor during thyroidectomy in a porcine model. METHODS: We developed an ETT-attached pressure sensor that uses the piezoelectric effect to measure laryngeal muscle twitching. Stimulus thresholds, amplitude, and latency of laryngeal twitching evaluated using the pressure sensor were compared to those measured using transcartilage needle EMG. The measured amplitude changes by EMG and the pressure sensor during recurrent laryngeal nerve (RLN) traction injury were compared. RESULTS: No significant differences in stimulus threshold intensity between EMG and the pressure sensor were observed. The EMG amplitude detected at 0.3 mA, increased with increasing stimulus intensity. When the stimulus was more than 1.0 mA, the amplitude showed a plateau. In a RLN traction injury experiment, the EMG amplitude did not recover even 20 minutes after stopping RLN traction. However, the pressure sensor showed a mostly recovery. CONCLUSION: The change in amplitude due to stimulation of the pressure sensor showed a pattern similar to EMG. Pressure sensors can be feasibly and reliably used for RLN traction injury prediction, RLN identification, and preservation through the detection of laryngeal muscle twitching. Our novel IONM system that uses an ETT with an attached pressure sensor to measure the change of surface pressure can be an alternative to EMG in the future.

10.
Sci Rep ; 9(1): 9250, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31239492

ABSTRACT

When a cardiac arrest occurs, it is necessary to perform cardiopulmonary resuscitation (CPR) as soon as possible. This requires maintaining the pressure depth at 5 cm at a rate of 100 cpm. For CPR machines, which are frequently used in ambulances, the return of spontaneous circulation (ROSC) is not superior to that of manual CPR, although CPR machines can maintain the compression rate and reciprocal distance of the compression plate more accurately. When the thoracic cavity is deformed due to repeated chest compressions, CPR machines must be adjusted. It is necessary to develop a method for measuring whether adequate CPR is achieved using CPR machines. CPR was performed on two pigs with a CPR machine, commencing 1 minute after the heart was stopped. Four CPR modes were used, with compression rates of 60 or 100 cpm and compression depths of 3 or 5 cm. The CPR machine was equipped with a load cell for measuring compression force, and a potentiometer for measuring compression depth. The measurement results obtained from the sensor were used to calculate the frequency components. The compression force and depth data were used to calculate the mechanical power of the CPR machine and mechanical impedance of the thoracic cavity. Changes in end-tidal carbon dioxide (ETCO2), coronary perfusion pressure (CPP), carotid blood flow (CBF), and right atrial pressure (RAP) were measured during performance of CPR; change in RAP refers to variation therein with chest compressions. Continuous CPR in both animals resulted in deformation of the chest cavity and a steady decline in impedance. The correlation between CPR power and change in RAP was 0.78, and that between compression force and CBF was 0.64. Impedance was not correlated with blood pressure or CBF. When the condition of the animal deteriorated due to cardiac arrest, the CPP decreased and ETCO2 increased. The CPR power and RAP varied according to the CPR mode rather than the condition of the animal. Measuring the CPR machine power does not require a separate procedure, such as catheter intubation, so should be suitable as an index of the quality of CPR in emergency situations.


Subject(s)
Atrial Pressure/physiology , Cardiopulmonary Resuscitation/instrumentation , Cardiopulmonary Resuscitation/standards , Hemodynamics , Animals , Blood Pressure , Cardiopulmonary Resuscitation/methods , Swine
11.
Clin Exp Otorhinolaryngol ; 12(4): 420-426, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31195791

ABSTRACT

OBJECTIVES: The sensitivity and positive predictive value of widely used intraoperative neuromonitoring (IONM) using electromyography (EMG) of the vocalis muscle in thyroid surgery are controversial. Thus, we developed a novel IONM system with an accelerometer sensor that uses the piezoelectric effect instead of EMG to detect laryngeal twitching. The objective of this study was to evaluate the feasibility and safety of this novel IONM system during thyroid surgery in a porcine model. METHODS: We developed an accelerometer sensor that uses the piezoelectric effect to measure laryngeal twitching in three dimensions. This novel accelerometer sensor was placed in the anterior neck skin (transcutaneous) or postcricoid area. Stimulus thresholds, amplitude, and latency of laryngeal twitching measured using the accelerometer sensor were compared to those measured through EMG of the vocalis muscle. RESULTS: The amplitudes of the accelerometer sensor at the anterior neck and postcricoid area were significantly lower than those of EMG because of differences in the measurement method used to evaluate laryngeal movement. However, no significant differences in stimulus thresholds between the EMG endotracheal tube and transcutaneous or postcricoid accelerometer sensors were observed. CONCLUSION: Accelerometer sensors located at the anterior neck or postcricoid area were able to identify laryngeal twitching. The stimulus intensity measured with these sensors was equivalent to that from conventional vocalis EMG. Our novel IONM system with an accelerometer sensor that checks changes in surface acceleration can be an alternative to EMG of the vocalis muscle for IONM in the future.

12.
Biomed Eng Online ; 18(1): 23, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30871548

ABSTRACT

BACKGROUND: The heart wall exhibits three layers of different thicknesses: the outer epicardium, mid-myocardium, and inner endocardium. Among these layers, the mid-myocardium is typically the thickest. As indicated by preliminary studies, heart-wall layers exhibit various characteristics with regard to electrophysiology, pharmacology, and pathology. Construction of an accurate three-dimensional (3D) model of the heart is important for predicting physiological behaviors. However, the wide variability of myocardial shapes and the unclear edges between the epicardium and soft tissues are major challenges in the 3D model segmentation approach for identifying the boundaries of the epicardium, mid-myocardium, and endocardium. Therefore, this results in possible variations in the heterogeneity ratios between the epicardium, mid-myocardium, and endocardium. The objective of this study was to observe the effects of different thickness ratios of the epicardium, mid-myocardium, and endocardium on cardiac arrhythmogenesis, reentry instability, and mechanical responses during arrhythmia. METHODS: We used a computational method and simulated three heterogeneous ventricular models: Model 1 had the thickest M cell layer and thinnest epicardium and endocardium. Model 2 had intermediate layer thicknesses. Model 3 exhibited the thinnest mid-myocardium and thickest epicardium and endocardium. Electrical and mechanical simulations of the three heterogeneous models were performed under normal sinus rhythm and reentry conditions. RESULTS: Model 1 exhibited the highest probability of terminating reentrant waves, and Model 3 exhibited to experience greater cardiac arrhythmia. In the reentry simulation, at 8 s, Model 3 generated the largest number of rotors (eight), while Models 1 and 2 produced five and seven rotors, respectively. There was no significant difference in the cardiac output obtained during the sinus rhythm. Under the reentry condition, the highest cardiac output was generated by Model 1 (19 mL/s), followed by Model 2 (9 mL/s) and Model 3 (7 mL/s). CONCLUSIONS: A thicker mid-myocardium led to improvements in the pumping efficacy and contractility and reduced the probability of cardiac arrhythmia. Conversely, thinner M cell layers generated more unstable reentrant spiral waves and hindered the ventricular pumping.


Subject(s)
Electrophysiological Phenomena , Mechanical Phenomena , Models, Cardiovascular , Ventricular Function , Biomechanical Phenomena , Humans
13.
Biomed Eng Online ; 17(1): 84, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921283

ABSTRACT

BACKGROUND: To reduce the risk of patient damage and complications during the cardiopulmonary resuscitation (CPR) process in emergency situations, it is necessary to monitor the status of the patient and the quality of CPR while CPR processing without additional bio-signal measurement devices. In this study, an algorithm is proposed to estimate the mechanical impedance (MI) between an actuator of the CPR machine and the chest of the patient, and to estimate the power delivered to the chest of the patient during the CPR process. METHODS: Two sensors for force and depth measurement were embedded into a custom-made CPR machine and the algorithm for MI and power estimation was implemented. The performance of the algorithm was evaluated by comparing the results from the kinetic model, the conventional discrete Fourier transform (DFT), and the proposed method. RESULTS: The estimations of the proposed method showed similar increasing/decreasing trends with the calculations from the kinetic model. In addition, the proposed method showed statistically equivalent performance in the MI estimation, and at the same time, showed statistically superior performance in the power estimation compared with the calculations from the conventional DFT. Furthermore, the MI and power estimation could be performed almost in real-time during the CPR process without excessive hands-off periods, and the intensity of random noise contained in the input signals did not seriously affect the MI and power estimations of the proposed method. CONCLUSION: We expect that the proposed algorithm can reduce various CPR-related complications and improve patient safety.


Subject(s)
Cardiopulmonary Resuscitation/adverse effects , Cardiopulmonary Resuscitation/instrumentation , Mechanical Phenomena , Thorax , Algorithms , Kinetics , Models, Biological , Safety
14.
Biomed Eng Online ; 17(1): 62, 2018 May 22.
Article in English | MEDLINE | ID: mdl-29784052

ABSTRACT

BACKGROUND AND AIMS: Although it is important to analyze the hemodynamic factors related to the right ventricle (RV) after left ventricular assist device (LVAD) implantation, previous studies have focused only on the alteration of the ventricular shape and lack quantitative analysis of the various hemodynamic parameters. Therefore, we quantitatively analyzed various hemodynamic parameters related to the RV under normal, heart failure (HF), and HF incorporated with continuous flow LVAD therapy by using a computational model. METHODS: In this study, we combined a three-dimensional finite element electromechanical model of ventricles, which is based on human ventricular morphology captured by magnetic resonance imaging (MRI) with a lumped model of the circulatory system and continuous flow LVAD function in order to construct an integrated model of an LVAD implanted-cardiovascular system. To induce systolic dysfunction, the magnitude of the calcium transient function under HF condition was reduced to 70% of the normal value, and the time constant was reduced by 30% of the normal value. RESULTS: Under the HF condition, the left ventricular end systolic pressure decreased, the left ventricular end diastolic pressure increased, and the pressure in the right atrium (RA), RV, and pulmonary artery (PA) increased compared with the normal condition. The LVAD therapy decreased the end-systolic pressure of the LV by 41%, RA by 29%, RV by 53%, and PA by 71%, but increased the right ventricular ejection fraction by 52% and cardiac output by 40%, while the stroke work was reduced by 67% compared with the HF condition without LVAD. The end-systolic ventricular tension and strain decreased with the LVAD treatment. CONCLUSION: LVAD enhances CO and mechanical unloading of the LV as well as those of the RV and prevents pulmonary hypertension which can be induced by HF.


Subject(s)
Computer Simulation , Heart Failure/physiopathology , Heart-Assist Devices , Mechanical Phenomena , Ventricular Function, Right , Biomechanical Phenomena , Finite Element Analysis , Heart Failure/therapy , Hemodynamics , Humans
15.
Int J Numer Method Biomed Eng ; 34(6): e2970, 2018 06.
Article in English | MEDLINE | ID: mdl-29488358

ABSTRACT

There is growing interest in genetic arrhythmia since mutations in gene which encodes the ion channel underlie numerous arrhythmias. Hasegawa et al reported that G229D mutation in KCNQ1 underlies atrial fibrillation due to significant shortening of action potential duration (APD) in atrial cells. Here, we predicted whether KCNQ1 G229D mutation affects ventricular fibrillation generation, although it shortens APD slightly compared with the atrial cell. We analyzed the effects of G229D mutation on electrical and mechanical ventricle behaviors (not considered in previous studies). We compared action potential shapes under wild-type and mutant conditions. Electrical wave propagations through ventricles were analyzed during sinus rhythm and reentrant conditions. IKs enhancement due to G229D mutation shortened the APD in the ventricular cells (6%, 0.3%, and 8% for endo, M, and epi-cells, respectively). The shortened APD contributed to 7% shortening of QT intervals, 29% shortening of wavelengths, 20% decrease in intraventricular pressure, and increase in end-systolic volume 17%, end-diastolic volume 7%, and end-diastolic pressure 11%, which further resulted in reduction in stroke volume as well as cardiac output (28%), ejection fraction 33% stroke work 44%, and ATP consumption 28%. In short, using computational model of the ventricle, we predicted that G229D mutation decreased cardiac pumping efficacy and increased the vulnerability of ventricular fibrillation.


Subject(s)
Atrial Fibrillation , Computer Simulation , Heart Ventricles , KCNQ1 Potassium Channel , Models, Cardiovascular , Mutation, Missense , Amino Acid Substitution , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Heart Ventricles/diagnostic imaging , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Humans , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism
16.
Biomed Eng Online ; 17(1): 18, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29394944

ABSTRACT

BACKGROUND: Counter-pulsation control (CPC) by ventricular assist devices (VADs) is believed to reduce cardiac load and increase coronary perfusion. However, patients with VADs have a higher risk of arrhythmia, which may cause the CPC to fail. Consequently, CPC has not been applied by VADs in clinical practice. The phase-locked loop (PLL) algorithm for CPC is readily implemented in VADs; however, it requires a normal, consistent heartbeat for adequate performance. When an arrhythmia occurs, the algorithm maintains a constant pumping rate despite the unstable heartbeat. Therefore, to apply the PLL algorithm to CPC, the hemodynamic effects of abnormal heartbeats must be analyzed. OBJECTIVES: This study sought to predict the hemodynamic effects in patients undergoing CPC using VADs, based on electrocardiogram (ECG) data, including a wide range of heart rate (HR) changes caused by premature ventricular contraction (PVC) or other reasons. METHODS: A four-element Windkessel hemodynamic model was used to reproduce the patient's aortic blood pressure in this study. ECG data from 15 patients with severe congestive heart failure were used to assess the effect of the CPC on the patients' hemodynamic state. The input and output flow characteristics of the pulsatile VAD (LibraHeart I, Cervika, Korea) were measured using an ultrasound blood flow meter (TS410, Transonic, USA), with the aortic pressure maintained at 80-120 mmHg. All other patient conditions were also reproduced. RESULTS: In patients with PVCs or normal heartbeats, CPC controlled by a VAD reduced the cardiac load by 20 and 40%, respectively. When the HR was greater for other reasons, such as sinus tachycardia, simultaneous ejection from the heart and VAD was observed; however, the cardiac load was not increased by rapid cardiac contractions resulting from decreased left ventricle volume. These data suggest that the PLL algorithm reduces the cardiac load and maintains consistent hemodynamic changes.


Subject(s)
Heart-Assist Devices , Pulsatile Flow , Ventricular Premature Complexes/therapy , Adult , Aged , Algorithms , Arrhythmias, Cardiac/diagnosis , Blood Pressure , Computer Simulation , Electrocardiography , Female , Heart Failure/therapy , Heart Rate , Heart Ventricles/metabolism , Hemodynamics , Humans , Male , Middle Aged , Models, Cardiovascular , Myocardial Contraction , Tachycardia/diagnosis , Young Adult
17.
Biomed Eng Online ; 17(1): 15, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29391037

ABSTRACT

BACKGROUND: Decellularized animal organs have been used as scaffolds for tissue engineering. To make a properly functioning scaffolds, the extracellular matrix (ECM) components must be preserved after decellularization. Because pulsatile flow is known to be beneficial for tissue perfusion, pulsatile perfusion of a detergent might decrease the exposure time of the tissues to the detergent used for decellularization. Using Energy Equivalent Pressure (EEP) as a pulsatility parameter, the effect of pulsatile flow in decellularization process is studied. RESULTS: Twelve rat hearts were decellularization with 1% sodium dodecyl sulfate (SDS) solution for 2 h. They are divided into two groups, one with pulsatile perfusion (n = 6), the other with non-pulsatile perfusion (n = 6) of SDS. The initial mean perfusion pressures were same in both group. The result indicated that the EEP and the perfusion flow were increased significantly in the pulsatile group compared to the non-pulsatile group. Photographs taken during the decellularization showed more profound decellularization in the pulsatile group. The residual DNA content in the scaffolds was significantly lower in the pulsatile group. However, the level of ECM components, collagen and GAG showed no significant differences between the groups. CONCLUSIONS: Decellularization is more efficient in pulsatile flow than in non-pulsatile flow but still preserves the ECM molecules.


Subject(s)
Extracellular Matrix/metabolism , Pulsatile Flow , Tissue Engineering , Tissue Scaffolds , Animals , Heart/physiology , Hemodynamics , Image Processing, Computer-Assisted , Male , Models, Animal , Perfusion , Rats , Rats, Sprague-Dawley , Sodium Dodecyl Sulfate
18.
Biomed Eng Online ; 15(1): 100, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27562439

ABSTRACT

BACKGROUND: In this study, a new algorithm was developed for estimating the pump outflow of a pneumatic ventricular assist device (p-VAD). The pump outflow estimation algorithm was derived from the ideal gas equation and determined the change in blood-sac volume of a p-VAD using two external pressure sensors. OBJECTIVES: Based on in vitro experiments, the algorithm was revised to consider the effects of structural compliance caused by volume changes in an implanted unit, an air driveline, and the pressure difference between the sensors and the implanted unit. METHODS: In animal experiments, p-VADs were connected to the left ventricles and the descending aorta of three calves (70-100 kg). Their outflows were estimated using the new algorithm and compared to the results obtained using an ultrasonic blood flow meter (UBF) (TS-410, Transonic Systems Inc., Ithaca, NY, USA). RESULTS: The estimated and measured values had a Pearson's correlation coefficient of 0.864. The pressure sensors were installed at the external controller and connected to the air driveline on the same side as the external actuator, which made the sensors easy to manage.


Subject(s)
Blood Pressure Determination/instrumentation , Heart-Assist Devices , Algorithms , Animals , Cattle , Stroke Volume , Ventricular Function, Left
19.
Biomed Eng Online ; 14: 25, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25884602

ABSTRACT

BACKGROUND: Patients who develop critical arrhythmia during left ventricular assist device (LVAD) perfusion have a low survival rate. For diagnosis of unexpected heart abnormalities, new heart-monitoring methods are required for patients supported by LVAD perfusion. Ventricular electrocardiography using electrodes implanted in the ventricle to detect heart contractions is unsuitable if the heart is abnormal. Left ventricular impedance (LVI) is useful for monitoring heart movement but does not show abnormal action potential in the heart muscle. OBJECTIVES: To detect detailed abnormal heart conditions, we obtained ventricular electrocardiograms (v-ECGs) and LVI simultaneously in porcine models connected to LVADs. METHODS: In the porcine models, electrodes were set on the heart apex and ascending aorta for real-time measurements of v-ECGs and LVI. As the carrier current frequency of the LVI was adjusted to 30 kHz, it was easily derived from the original v-ECG signal by using a high-pass filter (cutoff: 10 kHz). In addition, v-ECGs with a frequency band of 0.1 - 120 Hz were easily derived using a low-pass filter. Simultaneous v-ECG and LVI data were compared to detect heart volume changes during the Q-T period when the heart contracted. A new real-time algorithm for comparison of v-ECGs and LVI determined whether the porcine heartbeats were normal or abnormal. Several abnormal heartbeats were detected using the LVADs operating in asynchronous mode, most of which were premature ventricle contractions (PVCs). To evaluate the accuracy of the new method, the results obtained were compared to normal ECG data and cardiac output measured simultaneously using commercial devices. RESULTS: The new method provided more accurate detection of abnormal heart movements. This method can be used for various heart diseases, even those in which the cardiac output is heavily affected by LVAD operation.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Electric Impedance , Electrocardiography/methods , Heart Ventricles/physiopathology , Heart-Assist Devices , Monitoring, Physiologic/methods , Algorithms , Animals , Aorta , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/therapy , Cardiac Output , Electrodes, Implanted , Extremities , Hemorheology , Myocardial Contraction , Sus scrofa , Ventricular Premature Complexes/physiopathology
20.
Artif Organs ; 38(12): 1040-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24749943

ABSTRACT

The ventricular electrocardiogram (v-ECG) was developed for long-term monitoring of heartbeats in patients with a left ventricular assist device (LVAD) and does not normally have the functionality necessary to detect additional heart irregularities that can progress to critical arrhythmias. Although the v-ECG has the benefits of physiological optimization and counterpulsation control, when abnormal heartbeats occur, the v-ECG does not show the distinct abnormal waveform that enables easy detection of an abnormal heartbeat among normal heartbeats on the conventional ECG. In this study, the v-ECGs of normal and abnormal heartbeats are compared with each other with respect to peak-to-peak voltage, area, and maximal slopes, and a new method to detect abnormal heartbeats is suggested. In a series of animal experiments with three porcine models (Yorkshire pigs weighing 30-40 kg), a v-ECG and conventional ECG were taken simultaneously during LVAD perfusion. Clinical experts found 104 abnormal heartbeats from the saved conventional ECG data and confirmed that the other 3159 heartbeats were normal. Almost all of the abnormal heartbeats were premature ventricular contractions (PVCs), and there was short-term tachycardia for 3 s. A personal computer was used to automatically detect abnormal heartbeats with the v-ECG according to the new method, and its results were compared with the clinicians' results. The new method found abnormal heartbeats with 90% accuracy, and less than 15% of the total PVCs were missed.


Subject(s)
Heart Failure/physiopathology , Heart Ventricles/physiopathology , Heart-Assist Devices , Ventricular Premature Complexes/diagnosis , Algorithms , Animals , Disease Models, Animal , Electrocardiography , Heart Failure/surgery , Signal Processing, Computer-Assisted , Swine , Ventricular Premature Complexes/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...