Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cells ; 12(12)2023 06 14.
Article in English | MEDLINE | ID: mdl-37371099

ABSTRACT

Based on recent research, the non-coding genome is essential for controlling genes and genetic programming during development, as well as for health and cardiovascular diseases (CVDs). The microRNAs (miRNAs), lncRNAs (long ncRNAs), and circRNAs (circular RNAs) with significant regulatory and structural roles make up approximately 99% of the human genome, which does not contain proteins. Non-coding RNAs (ncRNA) have been discovered to be essential novel regulators of cardiovascular risk factors and cellular processes, making them significant prospects for advanced diagnostics and prognosis evaluation. Cases of CVDs are rising due to limitations in the current therapeutic approach; most of the treatment options are based on the coding transcripts that encode proteins. Recently, various investigations have shown the role of nc-RNA in the early diagnosis and treatment of CVDs. Furthermore, the development of novel diagnoses and treatments based on miRNAs, lncRNAs, and circRNAs could be more helpful in the clinical management of patients with CVDs. CVDs are classified into various types of heart diseases, including cardiac hypertrophy (CH), heart failure (HF), rheumatic heart disease (RHD), acute coronary syndrome (ACS), myocardial infarction (MI), atherosclerosis (AS), myocardial fibrosis (MF), arrhythmia (ARR), and pulmonary arterial hypertension (PAH). Here, we discuss the biological and clinical importance of miRNAs, lncRNAs, and circRNAs and their expression profiles and manipulation of non-coding transcripts in CVDs, which will deliver an in-depth knowledge of the role of ncRNAs in CVDs for progressing new clinical diagnosis and treatment.


Subject(s)
Cardiovascular Diseases , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/therapeutic use , RNA, Long Noncoding/genetics , RNA, Long Noncoding/therapeutic use , RNA, Circular/genetics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/drug therapy , Clinical Relevance , RNA, Untranslated
2.
J Korean Neurosurg Soc ; 66(6): 642-651, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37138505

ABSTRACT

OBJECTIVE: Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. METHODS: ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated ß-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. RESULTS: The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. CONCLUSION: Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.

3.
Sci Rep ; 13(1): 682, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639714

ABSTRACT

Dysembryoplastic neuroepithelial tumor (DNET) is a low-grade brain tumor commonly associated with drug-resistant epilepsy. About half of DNETs are accompanied by tiny nodular lesions separated from the main mass. The existence of these satellite lesions (SLs) has shown a strong association with tumor recurrence, suggesting that they are true tumors. However, it is not known whether SLs represent multiple foci of progenitor tumor cell extension and migration or a multifocal development of the main DNET. This study was designed to elucidate the histopathology and pathogenesis of SLs in DNETs. Separate biopsies from the main masses and SLs with DNET were analyzed. We performed comparative lesion sequencing and phylogenetic analysis. FGFR1 K656E and K655I mutations or duplication of the tyrosine kinase domain was found in all 3 DNET patients and the main masses and their SLs shared the same FGFR1 alterations. The phylogenic analysis revealed that the SLs developed independently from their main masses. It is possible that the main mass and its SLs were separated at an early stage in oncogenesis with shared FGFR1 alterations, and then they further expanded in different places. SLs of DNET are true tumors sharing pathogenic mutations with the main masses. It is plausible that multifocal tumor development takes place in the dysplastic cortex containing cells with a pathogenic genetic alteration.


Subject(s)
Brain Neoplasms , Glioma , Neoplasms, Neuroepithelial , Child , Humans , Phylogeny , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Neoplasm Recurrence, Local , Glioma/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Genomics , Magnetic Resonance Imaging
5.
Adv Healthc Mater ; 12(4): e2200527, 2023 02.
Article in English | MEDLINE | ID: mdl-36373222

ABSTRACT

This study hypothesizes that the application of low-dose nonthermal biocompatible dielectric barrier discharge plasma (DBD-NBP) to human gingival fibroblasts (HGFs) will inhibit colony formation but not cell death and induce matrix metalloproteinase (MMP) expression, extracellular matrix (ECM) degradation, and subsequent cell migration, which can result in enhanced wound healing. HGFs treated with plasma for 3 min migrate to each other across the gap faster than those in the control and 5-min treatment groups on days 1 and 3. The plasma-treated HGFs show significantly high expression levels of the cell cycle arrest-related p21 gene and enhanced MMP activity. Focal adhesion kinase (FAK) mediated attenuation of wound healing or actin cytoskeleton rearrangement, and plasma-mediated reversal of this attenuation support the migratory effect of DBD-NBP. Further, this work performs computer simulations to investigate the effect of oxidation on the stability and conformation of the catalytic kinase domain (KD) of FAK. It is found that the oxidation of highly reactive amino acids (AAs) Cys427, Met442, Cys559, Met571, Met617, and Met643 changes the conformation and increases the structural flexibility of the FAK protein and thus modulates its function and activity. Low-dose DBD-NBP-induces host cell cycle arrest, ECM breakdown, and subsequent migration, thus contributing to the enhanced wound healing process.


Subject(s)
Gingiva , Wound Healing , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Cell Movement , Fibroblasts , Cells, Cultured
6.
Clin Transl Immunology ; 11(11): e1431, 2022.
Article in English | MEDLINE | ID: mdl-36439636

ABSTRACT

Objectives: Kidney transplant (KT) is the most effective treatment for end-stage renal disease. The immunosuppressant anti-thymocyte globulin (ATG) has been applied for induction therapy to reduce the risk of acute transplant rejection for patients at high immunological risk. Despite its putative role in replicative stress during immune reconstitution, the effects of ATG on T-cell immunosenescent changes remain to be understood. Methods: Phenotypic and functional features of senescent T cells were examined by flow cytometry in 116 healthy controls (HC) and 95 KT patients for comparative analysis according to ATG treatment and CMV reactivation. The TCR repertoire was analysed in peripheral blood mononuclear cells (PBMCs) of KT patients. Results: T cells of KT patients treated with ATG (ATG+) show typical immunosenescent features, accumulation of CD28-, CD85j+ or CD57+ T cells, and imbalance of functional T-cell subsets, compared with untreated KT patients (ATG-). Plasma IL-15 and CMV-IgG levels were higher in KT patients than in HCs, and the IL-15 level positively correlated with the frequency of CD28- T cells in KT patients. ATG+ patients had a higher prevalence of CMV reactivation, which is associated with an increased frequency of CD28- T cells. As a result, ATG+ patients had expanded CMV-specific T cells and decreased TCR diversity. However, proliferation, cytokine-producing capacity and polyfunctionality of T cells were preserved in ATG+ patients. Conclusion: Our findings suggest that ATG treatment contributes to the accumulation of senescent T cells, which may have lifelong clinical implications in KT patients. Thus, these patients require long-term and comprehensive immune monitoring.

7.
BMC Cancer ; 22(1): 1221, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36437460

ABSTRACT

PURPOSE: Molecular subgrouping of medulloblastoma has become important due to its impact on risk group stratification. Immunohistochemistry (IHC) has been widely used but it has innate limitations. The NanoString assay has been proposed as an alternative method. This study aims to present the characteristics of medulloblastoma subgrouped by the NanoString assay and to compare the subgrouping results with the IHC method. METHODS: Pediatric patients with histological diagnosis of medulloblastoma who underwent surgery from 2007 to 2021 were included. Clinical characteristics, pathological findings were reviewed. Molecular subgrouping was performed by IHC and by NanoString nCounter Elements TagSets assay. Test for concordance between two methods was made. RESULTS: Among a total of 101 patients analyzed, subgrouping using the NanoString assay resulted in 14 (13.8%) WNT, 20 (19.8%) SHH, 18 (17.8%) Group 3, and 39 (38.6%) Group 4 subgroup cases. Survival analysis revealed the following from best to worse prognosis: WNT, Group 4, SHH, and Group 3. In SHH subgroup the large cell/anaplastic histology was present in 30% of cases. Seventy-one cases were analyzed for concordance between NanoString and IHC. Cohen's kappa value indicated moderate agreement but identification of Groups 3 and 4 with IHC using NPR3 and KCNA1 markers exhibited poor results. CONCLUSIONS: The NanoString assay of Korean medulloblastoma patients revealed a more aggressive clinical course in the SHH subgroup which may be explained by a higher proportion of large cell/anaplastic histology being present in this subgroup. IHC did not distinguish Group 3 or 4 accurately. The NanoString assay may represent a good alternative method for practical use in the clinical field.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Child , Medulloblastoma/diagnosis , Medulloblastoma/genetics , Cerebellar Neoplasms/diagnosis , Cerebellar Neoplasms/genetics , Immunohistochemistry , Prognosis , Survival Analysis
8.
Pharmaceutics ; 14(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36145623

ABSTRACT

The aim of this study was to develop a four-component self-nanoemulsifying drug delivery system (FCS) to enhance the solubility and dissolution of pazopanib hydrochloride (PZH). In the solubility test, PZH showed a highly pH-dependent solubility (pH 1.2 > water >> pH 4.0 and pH 6.8) and was solubilized at 70 °C in the order Kollisolv PG (5.38%, w/w) > Kolliphor RH40 (0.49%) > Capmul MCM C10 (0.21%) and Capmul MCM C8 (0.19%), selected as the solubilizer, the surfactant, and the oils, respectively. In the characterization of the three-component SNEDDS (TCS) containing Kolliphor RH40/Capmul MCM C10, the particle size of dispersion was very small (<50 nm) and the PZH loading was 0.5% at the weight ratio of 9/1. In the characterization of FCS containing additional Kollisolv PG to TCS, PZH loading was increased to 5.30% without any PZH precipitation, which was 10-fold higher compared to the TCS. The optimized FCS prepared with the selected formulation (Kolliphor RH40/Capmul MCM C10/Kollisolv PG) showed a consistently complete and high dissolution rate (>95% at 120 min) at four different pHs with 1% polysorbate 80, whereas the raw PZH and Kollisolv PG solution showed a pH-dependent poor dissolution rate (about 40% at 120 min), specifically at pH 6.8 with 1% polysorbate 80. In conclusion, PZH-loaded FCS in this work demonstrated enhanced solubility and a consistent dissolution rate regardless of medium pH.

9.
Genome Med ; 14(1): 88, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953846

ABSTRACT

BACKGROUND: The activation of the telomere maintenance mechanism (TMM) is one of the critical drivers of cancer cell immortality. In gliomas, TERT expression and TERT promoter mutation are considered to reliably indicate telomerase activation, while ATRX mutation and/or loss indicates an alternative lengthening of telomeres (ALT). However, these relationships have not been extensively validated in tumor tissues. METHODS: Telomerase repeated amplification protocol (TRAP) and C-circle assays were used to profile and characterize the TMM cross-sectionally (n = 412) and temporally (n = 133) across glioma samples. WES, RNA-seq, and NanoString analyses were performed to identify and validate the genetic characteristics of the TMM groups. RESULTS: We show through the direct measurement of telomerase activity and ALT in a large set of glioma samples that the TMM in glioma cannot be defined solely by the combination of telomerase activity and ALT, regardless of TERT expression, TERT promoter mutation, and ATRX loss. Moreover, we observed that a considerable proportion of gliomas lacked both telomerase activity and ALT. This telomerase activation-negative and ALT negative group exhibited evidence of slow growth potential. By analyzing a set of longitudinal samples from a separate cohort of glioma patients, we discovered that the TMM is not fixed and can change with glioma progression. CONCLUSIONS: This study suggests that the TMM is dynamic and reflects the plasticity and oncogenicity of tumor cells. Direct measurement of telomerase enzyme activity and evidence of ALT should be considered when defining TMM. An accurate understanding of the TMM in glioma is expected to provide important information for establishing cancer management strategies.


Subject(s)
Glioma , Telomerase , Glioma/genetics , Humans , Mutation , Telomerase/genetics , Telomere/genetics , Telomere Homeostasis
10.
Pharmaceutics ; 14(8)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36015320

ABSTRACT

Alectinib hydrochloride (ALH), a tyrosine kinase inhibitor, is a practically water-insoluble drug classified as BCS class IV. The present study aimed to develop novel suspended self-nanoemulsifying drug delivery system (Su-SNEDDS) to enhance the solubility and dissolution rate. The Su-SNEDDS was prepared by saturation and suspension of ALH in SNEDDS with ultrasonication energy. According to evaluation by the dispersion test and the results of particle size analysis, the selected SNEDDS composed of Kolliphor HS 15 and Capmul MCM C8 as surfactant and oil, respectively, showed a complete dissolution within 30 min. However, the SNEDDS loaded and solubilized only small amount of ALH (<0.6%, w/w). On the other hand, 10% ALH-loaded Su-SNEDDS containing small and micronized ALH particles of <5 µm had about 20-fold higher ALH-loading% than the SNEDDS and reached a 100% dissolution rate within 30 min in 1% sodium lauryl sulfate (SLS) pH 1.2 buffer. In the dispersion test and microscopic observation, micronized ALH particles in the Su-SNEDDS were readily dispersed in the dissolution medium with spontaneous nanoemulsion formation and instantly solubilized with the aid of SLS. Taken together, our results suggest that the Su-SNEDDS would be a potent oral dosage form to enhance the solubilization and dissolution rate of ALH in a new technological way.

11.
Pharmaceutics ; 14(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35214110

ABSTRACT

Effective penetration into cells, or binding to cell membranes is an essential property of an effective nanoparticle drug delivery system (DDS). Nanoparticles are generally internalized through active transport mechanisms such as apoptosis, and cargo can be released directly into the cytoplasm. A metal-organic framework (MOF) is a network structure consisting of metal clusters connected by organic linkers with high porosity; MOFs provide a desirable combination of structural features that can be adjusted with large cargo payloads, along with Cu, Co, and Zn-MOFs, which have the chemical stability required for water-soluble use. Bioactive MOFs containing copper, cobalt, and zinc were prepared by modifying previous methods as therapeutic drugs. Their structures were characterized via PXRD, single-crystal crystallographic analysis, and FT-IR. The degradability of MOFs was measured in media such as deionized water or DPBS by PXRD, SEM, and ICP-MS. Furthermore, we investigated the anticancer activity of MOFs against the cell lines SKOV3, U87MG, and LN229, as well as their biocompatibility with normal fibroblast cells. The results show that a nanoporous 3D Cu-MOF could potentially be a promising candidate for chemoprevention and chemotherapy.

12.
Metabolites ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34940608

ABSTRACT

Diagnosing leptomeningeal metastasis (LM) in medulloblastoma is currently based on positive cerebrospinal fluid (CSF) cytology or magnetic resonance imaging (MRI) finding. However, the relevance of discordant results has not been established. We evaluated the diagnostic potential of CSF metabolomic profiles in the medulloblastoma LM assessment. A total of 83 CSF samples from medulloblastoma patients with documented MRI and CSF cytology results at the time of sampling for LM underwent low-mass ions (LMIs) analysis using liquid chromatography-mass spectrometry. Discriminating LMIs were selected by a summed sensitivity and specificity (>160%) and LMI discriminant equation (LOME) algorithms, evaluated by measuring diagnostic accuracy for verifying LM groups of different MRI/cytology results. Diagnostic accuracy of LM in medulloblastoma was 0.722 for cytology and 0.889 for MRI. Among 6572 LMIs identified in all sample, we identified 27 discriminative LMIs differentiating MRI (+)/cytology (+) from MRI (-)/cytology (-). Using LMI discriminant equation (LOME) analysis, we selected 9 LMIs with a sensitivity of 100% and a specificity of 93.6% for differentiating MRI (+)/cytology (+) from MRI (-)/cytology (-). Another LOME of 20 LMIs significantly differentiated sampling time relative to treatment (p = 0.007) and the presence or absence of LM-related symptoms (p = 0.03) in the MRI (+)/cytology (-) group. CSF metabolomics of medulloblastoma patients revealed significantly different profiles among LM diagnosed with different test results. We suggest that LM patients could be screened by appropriately selected LOME-generated LMIs to support LM diagnosis by either MRI or cytology alone.

13.
Cells ; 10(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34685708

ABSTRACT

Pelvic organ prolapse (POP) is a chronic disorder that affects quality of life in women. Several POP treatments may be accompanied by abrasion, constant infection, and severe pain. Therefore, new treatment methods and improvements in current treatments for POP are required. Non-thermal atmospheric-pressure plasma is a rising biomedical therapy that generates a mixed cocktail of reactive species by different mechanisms. In this study, we applied a cylinder-type dielectric barrier discharge plasma device to create a plasma-treated liquid (PTL). The PTL was added to primary cultured human uterosacral ligament fibroblast (hUSLF) cells from POP patients at each stage. Surprisingly, treatment with diluted PTL increased hUSLF cell viability but decreased ovarian cancer cell viability. PTL also decreased cell apoptosis in hUSLF cells but increased it in SKOV3 cells. Our results suggest that PTL protects hUSLF cells from cell apoptosis by controlling the p53 pathway and improves cell viability, implying that PTL is a promising application for POP therapy.


Subject(s)
Fibroblasts/pathology , Ligaments/pathology , Pelvic Organ Prolapse/pathology , Plasma Gases/pharmacology , Sacrum/pathology , Uterus/pathology , Aged , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Female , Fibroblasts/drug effects , Humans , Middle Aged
14.
Front Oncol ; 11: 648023, 2021.
Article in English | MEDLINE | ID: mdl-34367950

ABSTRACT

PURPOSE: Atypical teratoid/rhabdoid tumor (AT/RT) is arising typically in young children and is associated with a dismal prognosis which there is currently no curative chemotherapeutic regimen. Based on previous studies showing high histone deacetylase 1 (HDAC1) expression in AT/RT, the HDAC1 inhibitor CI-994 was used as a novel treatment strategy in this study. We assessed the anticancer effects of CI-994 and conventional drugs (etoposide, cisplatin or 4-HC) in AT/RT cells. METHODS: AT/RT patient-derived primary cultured cells and cell lines were prepared. HDAC1 was estimated by real-time quantitative polymerase chain reaction (RT-qPCR). The interaction of the drugs was analyzed using isobologram analysis. Cell viability, apoptosis, HDAC enzyme activity and western blot assays were carried out. RESULTS: HDAC1 was overexpressed in AT/RT compared to medulloblastoma. The combination index (CI) of CI-994 with etoposide revealed a synergistic effect in all AT/RT cells, but no synergistic effect was observed between CI-994 and cisplatin or 4-HC. CI-994 effectively reduced not only Class I HDAC gene expression but also HDAC enzyme activity. The combination treatment of CI-994 with etoposide significantly increased apoptosis compared to the single treatment. The enhanced effect of apoptosis by this combination treatment is related to a signaling pathway which decreases topoisomerase (Topo) II and increases histone H3 acetylation (Ac-H3). CONCLUSION: We demonstrate that the combination treatment of CI-994 with etoposide exerts a synergistic anticancer effect against AT/RT by significantly inducing apoptosis through Topo II and Ac-H3 regulation. CLINICAL RELEVANCE: This combination treatment might be considered a viable therapeutic strategy for AT/RT patients.

15.
J Nanosci Nanotechnol ; 21(7): 3679-3682, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33715673

ABSTRACT

Formation of an electrolyte complex using the electrostatic interactions between a polyanionic polymer and a cationic drug is a simple and efficient method of preparing a colloidal drug carrier system. Dextran sulfate, with a negatively charged sulfate group, was reacted in an acetate buffer solution of pH 3 with positively charged 1° amine, 2° amine, 3° amine, piperazine, and piperidine structures from 24 small-molecule drugs. The electrolyte complex was formed from 15 drugs, 63% of those tested. The tendency to form the electrolyte complex was in the order of piperazine and piperidine >3° amine >>2° amine. The drugs with the 1° amine structure failed to form an electrolyte complex. The mean particle sizes were in the range of 50-740 nm, and most of them showed a submicron colloidal dispersion of <400 nm. Regarding drug encapsulation efficiency (%), 11 drugs with piperazine, piperidine, and 3° amine structures showed 60-98% efficiency, which was fairly high. The results suggest that directly forming the electrolyte complex with dextran sulfate yields promising structural attributes as a submicron colloidal drug carrier system.


Subject(s)
Amines , Drug Carriers , Dextran Sulfate , Electrolytes , Particle Size
16.
Cancer Cell Int ; 20(1): 558, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33292274

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) secreted by tumours, including exosomes, are important factors that regulate cell-cell interactions in oncogenesis. Although EV studies are ongoing, the biological understanding of EV-miRNAs derived from brain tumour spheroid-forming cells (BTSCs) of medulloblastoma is poor. PURPOSES: We explored the specific cellular miRNAs and EV-miRNAs in medulloblastoma BTSCs to determine their potential biological function. METHODS: Bulk tumor cells (BTCs) and BTSCs were cultured under different conditions from medulloblastoma tissues (N = 10). RESULTS: Twenty-four miRNAs were simultaneously increased in both cells and EVs derived from BTSCs in comparison to BTCs. After inhibition of miR-135b or miR135a which were the most significantly increased in BTSCs, cell viability, self-renewal and stem cell marker expression decreased remarkably. Through integrated analysis of mRNAs and miRNAs data, we found that angiomotin-like 2 (AMOTL2), which was significantly decreased, was targeted by both miR-135b and miR-135a. STAT6 and GPX8 were targeted only by miR-135a. Importantly, low expression of AMOTL2 was significantly associated with overall poor survival in paediatric Group 3 and Group 4 medulloblastoma patients. CONCLUSION: Our results indicated that inhibition of miR-135b or miR-135a leads to suppress stemness of BTSC through modulation of AMOTL2.

17.
Cancer Lett ; 486: 38-45, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32428661

ABSTRACT

Atypical teratoid/rhabdoid tumor (AT/RT) is the most malignant tumor of the central nervous system that generally occurs in young children. Despite the use of intensive multimodal therapy for AT/RT, the prognosis is still poor. The brain tumor initiating cells in AT/RT cells has been suggested as one of the challenges in AT/RT treatment. These cells have high expression of aldehyde dehydrogenase (ALDH). We investigated the combination effect of the ALDH inhibitor, disulfiram and cisplatin in the treatment of AT/RT cells. Isobologram analysis revealed that the combination therapy synergistically increases AT/RT cell death. The enzyme activity of ALDH AT/RT cells was effectively reduced by the combination therapy. We proposed that the synergistic augmentation occurs, at least partially through an increase in cleaved Poly (ADP-ribose) polymerase (PARP)-dependent apoptosis mediated by activating transcription factor 3 (ATF3). In the AT/RT mouse model, the combination therapy decreased tumor volume and prolonged survival. Immunofluorescence assay in mouse brain tissues were consistent with the expression of ATF3 and cleaved PARP. Our study demonstrates enhanced anti-cancer effect of combination therapy of disulfiram and cisplatin. This combination might provide a viable therapeutic strategy for AT/RT patients.


Subject(s)
Brain Neoplasms/drug therapy , Cisplatin/pharmacology , Disulfiram/pharmacology , Rhabdoid Tumor/drug therapy , Teratoma/drug therapy , Activating Transcription Factor 3/physiology , Aldehyde Dehydrogenase/metabolism , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cisplatin/administration & dosage , Disulfiram/administration & dosage , Drug Therapy, Combination , Female , Humans , Mice , Mice, Inbred BALB C , Rhabdoid Tumor/pathology , Teratoma/pathology
18.
Cancers (Basel) ; 12(1)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963881

ABSTRACT

Nonthermal plasma is a promising novel therapy for the alteration of biological and clinical functions of cells and tissues, including apoptosis and inhibition of tumor progression. This therapy generates reactive oxygen and nitrogen species (RONS), which play a major role in anticancer effects. Previous research has verified that plasma jets can selectively induce apoptosis in various cancer cells, suggesting that it could be a potentially effective novel therapy in combination with or as an alternative to conventional therapeutic methods. In this study, we determined the effects of nonthermal air soft plasma jets on a U87 MG brain cancer cell line, including the dose- and time-dependent effects and the physicochemical and biological correlation between the RONS cascade and p38/mitogen-activated protein kinase (MAPK) signaling pathway, which contribute to apoptosis. The results indicated that soft plasma jets efficiently inhibit cell proliferation and induce apoptosis in U87 MG cells but have minimal effects on astrocytes. These findings revealed that soft plasma jets produce a potent cytotoxic effect via the initiation of cell cycle arrest and apoptosis. The production of reactive oxygen species (ROS) in cells was tested, and an intracellular ROS scavenger, N-acetyl cysteine (NAC), was examined. Our results suggested that soft plasma jets could potentially be used as an effective approach for anticancer therapy.

19.
BMC Cancer ; 19(1): 848, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31462227

ABSTRACT

BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RTs) are highly malignant brain tumors with inactivation of the SMARCB1 gene, which play a critical role in genomic transcriptional control. In this study, we analyzed the genomic and transcriptomic profiles of human AT/RTs to discover new druggable targets. METHODS: Multiplanar sequencing analyses, including whole exome sequencing (WES), single nucleotide polymorphism (SNP) arrays, array comparative genomic hybridization (aCGH), and whole transcriptome sequencing (RNA-Seq), were performed on 4 AT/RT tissues. Validation of a druggable target was conducted using AT/RT cell lines. RESULTS: WES revealed that the AT/RT genome is extremely stable except for the inactivation of SMARCB1. However, we identified 897 significantly upregulated genes and 523 significantly downregulated genes identified using RNA-Seq, indicating that the transcriptional profiles of the AT/RT tissues changed substantially. Gene set enrichment assays revealed genes related to the canonical pathways of cancers, and nucleophosmin (NPM1) was the most significantly upregulated gene in the AT/RT samples. An NPM1 inhibitor (NSC348884) effectively suppressed the viability of 7 AT/RT cell lines. Network analyses showed that genes associated with NPM1 are mainly involved in cell cycle regulation. Upon treatment with an NPM1 inhibitor, cell cycle arrest at G1 phase was observed in AT/RT cells. CONCLUSIONS: We propose that NPM1 is a novel therapeutic target for AT/RTs.


Subject(s)
Exome Sequencing/methods , Gene Expression Profiling/methods , Nuclear Proteins/genetics , Rhabdoid Tumor/genetics , Teratoma/genetics , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Comparative Genomic Hybridization , Gene Expression Regulation, Neoplastic , Humans , Indoles/pharmacology , Nucleophosmin , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sequence Analysis, RNA , Up-Regulation
20.
BMC Cancer ; 19(1): 571, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31185958

ABSTRACT

BACKGROUND: Using a pathway-focused approach, we aimed to provide a subgroup-specific basis for finding novel therapeutic strategies and further refinement of the risk stratification in pediatric medulloblastoma. METHOD: Based on genome-wide Cox regression and Gene Set Enrichment Analysis, we investigated prognosis-related signaling pathways and core genes in pediatric medulloblastoma subgroups using 530 patient data from Medulloblastoma Advanced Genomic International Consortium (MAGIC) project. We further examined the relationship between expression of the prognostic core genes and frequent chromosome aberrations using broad range copy number change data. RESULTS: In SHH subgroup, relatively high expression of the core genes involved in p53, PLK1, FOXM1, and Aurora B signaling pathways are associated with poor prognosis, and their average expression synergistically increases with co-occurrence of losses of 17p, 14q, or 10q, or gain of 17q. In Group 3, in addition to high MYC expression, relatively elevated expression of PDGFRA, IGF1R, and FGF2 and their downstream genes in PI3K/AKT and MAPK/ERK pathways are related to poor survival outcome, and their average expression is increased with the presence of isochromosome 17q [i(17q)] and synergistically down-regulated with simultaneous losses of 16p, 8q, or 4q. In Group 4, up-regulation of the genes encoding various immune receptors and those involved in NOTCH, NF-κB, PI3K/AKT, or RHOA signaling pathways are associated with worse prognosis. Additionally, the expressions of Notch genes correlate with those of the prognostic immune receptors. Besides the Group 4 patients with previously known prognostic aberration, loss of chromosome 11, those with loss of 8q but without i(17q) show excellent survival outcomes and low average expression of the prognostic core genes whereas those harboring 10q loss, 1q gain, or 12q gain accompanied by i(17q) show bad outcomes. Finally, several metabolic pathways known to be reprogrammed in cancer cells are detected as prognostic pathways including glutamate metabolism in SHH subgroup, pentose phosphate pathway and TCA cycle in Group 3, and folate-mediated one carbon-metabolism in Group 4. CONCLUSIONS: The results underscore several subgroup-specific pathways for potential therapeutic interventions: SHH-GLI-FOXM1 pathway in SHH subgroup, receptor tyrosine kinases and their downstream pathways in Group 3, and immune and inflammatory pathways in Group 4.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Medulloblastoma/genetics , Medulloblastoma/metabolism , Metabolic Networks and Pathways , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cerebellar Neoplasms/diagnosis , Child , Child Health , Child, Preschool , Female , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Gene Expression , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Inflammation/metabolism , Kaplan-Meier Estimate , Male , Medulloblastoma/diagnosis , Prognosis , Proportional Hazards Models , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/genetics , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...