Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 672, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822018

ABSTRACT

ATP-binding cassette transporter B6 (ABCB6), a protein essential for heme biosynthesis in mitochondria, also functions as a heavy metal efflux pump. Here, we present cryo-electron microscopy structures of human ABCB6 bound to a cadmium Cd(II) ion in the presence of antioxidant thiol peptides glutathione (GSH) and phytochelatin 2 (PC2) at resolutions of 3.2 and 3.1 Å, respectively. The overall folding of the two structures resembles the inward-facing apo state but with less separation between the two halves of the transporter. Two GSH molecules are symmetrically bound to the Cd(II) ion in a bent conformation, with the central cysteine protruding towards the metal. The N-terminal glutamate and C-terminal glycine of GSH do not directly interact with Cd(II) but contribute to neutralizing positive charges of the binding cavity by forming hydrogen bonds and van der Waals interactions with nearby residues. In the presence of PC2, Cd(II) binding to ABCB6 is similar to that observed with GSH, except that two cysteine residues of each PC2 molecule participate in Cd(II) coordination to form a tetrathiolate. Structural comparison of human ABCB6 and its homologous Atm-type transporters indicate that their distinct substrate specificity might be attributed to variations in the capping residues situated at the top of the substrate-binding cavity.


Subject(s)
ATP-Binding Cassette Transporters , Humans , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/ultrastructure , Binding Sites , Cadmium/metabolism , Cadmium/chemistry , Cryoelectron Microscopy , Glutathione/metabolism , Glutathione/chemistry , Models, Molecular , Phytochelatins/metabolism , Phytochelatins/chemistry , Protein Binding , Protein Conformation
2.
Commun Biol ; 6(1): 960, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735522

ABSTRACT

Human ATP-binding cassette transporter subfamily B6 (ABCB6) is a mitochondrial ATP-driven pump that translocates porphyrins from the cytoplasm into mitochondria for heme biosynthesis. Within the transport pathway, a conserved aromatic residue W546 located in each monomer plays a pivotal role in stabilizing the occluded conformation via π-stacking interactions. Herein, we employed cryo-electron microscopy to investigate the structural consequences of a single W546A mutation in ABCB6, both in detergent micelles and nanodiscs. The results demonstrate that the W546A mutation alters the conformational dynamics of detergent-purified ABCB6, leading to entrapment of the transporter in an outward-facing transient state. However, in the nanodisc system, we observed a direct interaction between the transporter and a phospholipid molecule that compensates for the absence of the W546 residue, thereby facilitating the normal conformational transition of the transporter toward the occluded state following ATP hydrolysis. The findings also reveal that adoption of the outward-facing conformation causes charge repulsion between ABCB6 and the bound substrate, and rearrangement of key interacting residues at the substrate-binding site. Consequently, the affinity for the substrate is significantly reduced, facilitating its release from the transporter.


Subject(s)
Detergents , Porphyrins , Humans , Cryoelectron Microscopy , ATP-Binding Cassette Transporters/genetics , Membrane Transport Proteins , Adenosine Triphosphate
3.
Nat Commun ; 13(1): 5851, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195619

ABSTRACT

TAPL is a lysosomal ATP-binding cassette transporter that translocates a broad spectrum of polypeptides from the cytoplasm into the lysosomal lumen. Here we report that, in addition to its well-known role as a peptide translocator, TAPL exhibits an ATP-dependent phosphatidylserine floppase activity that is the possible cause of its high basal ATPase activity and of the lack of coupling between ATP hydrolysis and peptide efflux. We also present the cryo-EM structures of mouse TAPL complexed with (i) phospholipid, (ii) cholesteryl hemisuccinate (CHS) and 9-mer peptide, and (iii) ADP·BeF3. The inward-facing structure reveals that F449 protrudes into the cylindrical transport pathway and divides it into a large hydrophilic central cavity and a sizable hydrophobic upper cavity. In the structure, the peptide binds to TAPL in horizontally-stretched fashion within the central cavity, while lipid molecules plug vertically into the upper cavity. Together, our results suggest that TAPL uses different mechanisms to function as a peptide translocase and a phosphatidylserine floppase.


Subject(s)
Peptides , Phosphatidylserines , ATP-Binding Cassette Transporters/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Lysosomes/metabolism , Mice , Peptides/chemistry , Phosphatidylserines/metabolism
4.
Mol Cells ; 45(8): 575-587, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35950458

ABSTRACT

Human ABCB6 is an ATP-binding cassette transporter that regulates heme biosynthesis by translocating various porphyrins from the cytoplasm into the mitochondria. Here we report the cryo-electron microscopy (cryo-EM) structures of human ABCB6 with its substrates, coproporphyrin III (CPIII) and hemin, at 3.5 and 3.7 Å resolution, respectively. Metalfree porphyrin CPIII binds to ABCB6 within the central cavity, where its propionic acids form hydrogen bonds with the highly conserved Y550. The resulting structure has an overall fold similar to the inward-facing apo structure, but the two nucleotide-binding domains (NBDs) are slightly closer to each other. In contrast, when ABCB6 binds a metal-centered porphyrin hemin in complex with two glutathione molecules (1 hemin: 2 glutathione), the two NBDs end up much closer together, aligning them to bind and hydrolyze ATP more efficiently. In our structures, a glycine-rich and highly flexible "bulge" loop on TM helix 7 undergoes significant conformational changes associated with substrate binding. Our findings suggest that ABCB6 utilizes at least two distinct mechanisms to fine-tune substrate specificity and transport efficiency.


Subject(s)
Porphyrins , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , Glutathione/metabolism , Hemin/metabolism , Humans , Porphyrins/metabolism
5.
Mol Cells ; 42(6): 460-469, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31250619

ABSTRACT

Bacterial α-type carbonic anhydrase (α-CA) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable α-CA from Persephonella marina EXH1 (pm CA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pm CA homodimer in which each monomer consists of a 10-stranded ß-sheet in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pm CA and solvent molecules. These findings may assist development of novel α-CAs with improved thermal and/or alkaline stability for applications such as CO2 capture and sequestration.


Subject(s)
Bacteria/enzymology , Carbonic Anhydrases/chemistry , Acetazolamide/pharmacology , Binding Sites , Carbonic Anhydrases/metabolism , Catalytic Domain , Crystallography, X-Ray , Dimerization , Hydrogen Bonding , Protein Conformation
6.
Gene ; 559(2): 155-63, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25597767

ABSTRACT

Perilla frutescens (L.) Britt. is a self-pollinating annual species and is widely cultivated in China, Korea and Japan as an economic crop and a source of medicine and spices. In this study, we sequenced one cultivar variety (PF98095) of P. frutescens (L.) var. frutescens Britt., which was assembled as reference and other three varieties (PF11109, weedy of var. frutescens, PF06336 and PF06353, cultivars of varieties crispa) in order to carry out comparative expression profiling within cultivar and weedy in varieties frutescens and between varieties frutescens and varieties crispa of cultivar type in P. frutescens. Assembly of PF98095, annotation mapping, DEG (differentially expressed gene) profiling, and comparative analysis were performed. We found that more than 65% of the reads were mapped to the reference of P. frutescens gene set. Moreover, we detected 22,962 DEGs in the weedy variety compared to the cultivar, and also, 22,138 and 23,845 DEGs were identified in two cultivars according to the reference, respectively. The DEGs and functional classification were developed to analyze the differences between weedy and cultivar and between varieties frutescens and varieties crispa of Perilla. Furthermore, candidate genes for the different color and seed size of Perilla were identified that could be further investigated in future study. The herein results may play a significant role, and contribute in functional transcriptome studies of Perilla.


Subject(s)
Perilla frutescens/genetics , Contig Mapping , Gene Expression Regulation, Plant , Molecular Sequence Annotation , Perilla frutescens/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Sequence Analysis, RNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...