Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39339435

ABSTRACT

Copper(I) thiocyanate (CuSCN) is considered an efficient HTL of low cost and with high stability in perovskite solar cells (PSCs). However, the diethyl sulfide solvent used for CuSCN preparation is known to cause damage to the underlying perovskite layer in n-i-p PSCs. Antisolvent treatment of CuSCN during spin-coating can effectively minimize interfacial interactions. However, the effects of antisolvent treatment are not sufficiently understood. In this study, the effects of five different antisolvents were investigated. Scanning electron microscopy and X-ray diffraction analyses showed that the antisolvent treatment improved the crystallinity of the CuSCN layer on the perovskite layer and reduced damage to the perovskite layer. However, X-ray and ultraviolet photoelectron spectroscopy analyses showed that antisolvent treatment did not affect the chemical bonds or electronic structures of CuSCN. As a result, the power conversion efficiency of the PSCs was increased from 14.72% for untreated CuSCN to 15.86% for ethyl-acetate-treated CuSCN.

2.
Polymers (Basel) ; 15(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36772072

ABSTRACT

Interface properties between charge transport and perovskite light-absorbing layers have a significant impact on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a polyelectrolyte composite that is widely used as a hole transport layer (HTL) to facilitate hole transport from a perovskite layer to an anode. However, PEDOT:PSS must be modified using a functional additive because PSCs with a pristine PEDOT:PSS HTL do not exhibit a high PCE. Herein, we demonstrate an increase in the PCE of PSCs with a polyethylene glycol hexadecyl ether (Brij C10)-mixed PEDOT:PSS HTL. Photoelectron spectroscopy results show that the Brij C10 content becomes significantly high in the HTL surface composition with an increase in the Brij C10 concentration (0-5 wt%). The enhanced PSC performance, e.g., a PCE increase from 8.05 to 11.40%, is attributed to the reduction in non-radiative recombination at the interface between PEDOT:PSS and perovskite by the insulating Brij C10. These results indicate that the suppression of interface recombination is essential for attaining a high PCE for PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL