Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acc Chem Res ; 56(13): 1756-1765, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37352443

ABSTRACT

ConspectusDeveloping next-generation colloidal semiconductor nanocrystals with high-quality optoelectronic properties and precise processability relies on achieving complete mastery over the surface characteristics of nanocrystals (NCs). This requires precise engineering of the ligand-NC surface interactions, which poses a challenge due to the complex reactivity of the multiple binding sites across the entire surface. Accordingly, recent progress has been made by strategically combining well-defined surface models with quantitative surface reactions to advance our understanding and manipulation of NC surface chemistry. Our lab has contributed to this progress by developing a size-dependent shape model of IV-VI NCs, gaining insights into their unique facet-specific chemistry, and developing a systematic ligand modification strategy for target applications. Furthermore, we have created well-defined facets in III-V NCs via a co-passivation strategy, addressing the previously lacking specific shapes.This Account is divided into three parts. First, we discuss the complexities involved in comprehensively understanding the nanocrystal surface structure at the atomistic level. We explain why we focused on well-defined NCs with a large exciton Bohr radius to explore facets, an essential aspect of surface heterogeneity across the entire NC. Second, we present our work on one of the most studied nanocrystals, IV-VI materials, and how facet-specific surface chemistry has led to a meaningful understanding and control of the NC's surface. We discovered a size-dependent facet distribution in IV-VI NCs and suggested facet-specific surface chemistry to improve the photophysical properties of NCs. We further modulate the electronic properties of NC assemblies for efficient optoelectronic applications. Third, we describe our recent success in achieving well-defined facets and their facet-specific chemistry in III-V NCs, which have yet to be explored as much as classical II-VI or IV-VI materials. We explain how controlling the surfaces in III-V NCs has been challenging. We present a precise growth platform for the geometric modulation of NCs, which can be further explored for shape-dependent exciton behavior and surface reactivities.Taken together, we present a compelling case for utilizing facet-specific chemistry as a platform for mechanistic investigation and morphology exploration, which can pave the way for developing high-quality and precisely designed NCs for optoelectronic technologies, unlocking new multidisciplinary applications.

2.
Sci Rep ; 10(1): 15817, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32978435

ABSTRACT

This work reports the synthesis and application of highly tuned cadmium-free green and red InPZnSe1-xSx/ZnS quantum dots (QDs) in QD enhanced liquid crystal displays (LCD). The emissions of the quantum dots were synthetically tuned to sharp emissions at low full-width at half maximum. The QDs were incorporated in LCD devices as quantum dot enhancement film (QDEF) or as a quantum dot incorporated color filter (QDCF). Synthetic tuning of the gradient inter-shell in the QDs leads to reduced full width at half-maximum, resulting in sharp green and red emissions from both types of devices. The application of the same QDs to devices using these different integration techniques shows the superiority of QDCF devices over QDEF ones. The RGB color gamut of a QDCF-LCD was 81.4% of REC.2020 in the CIE 1931 color space compared to 71.2% obtained for a QDEF-LCD display. The improved performance of QDCF was mainly due to the optimal interactions between the green QDs and the green color filter. The superior performance of cadmium-free InPZnSe1-xSx/ZnS QDCFs in LCDs make them well-suited for ultra-high-definition TV formats.

3.
ACS Appl Mater Interfaces ; 12(22): 25159-25167, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32390418

ABSTRACT

Perovskite CsPbX3 (X = Br, Cl, and I) nanostructures have been intensively studied as they are luminescent, photovoltaic, and photosensitizing active materials. Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) with MX2 (M = Mo, W; X = S, Se, Te, etc.) structures have been used in flexible optoelectronic devices. In this study, perovskite green-light-emitting CsPbBr2I1 quantum dots (QDs) and blue-light-emitting CsPb(Cl/Br)3-QDs are utilized to enhance the photoresponsive characteristics of 2D MSe2 (M = Mo and W)-based field-effect transistors (FETs). From laser confocal microscopy photoluminescence (PL) experiments, PL quenching of the perovskite CsPb(Cl/Br)3-QDs and CsPbBr2I1-QDs is observed after hybridization with MoSe2 and WSe2 layers, respectively, which reflects the charge-transfer effect. According to the characteristics of the FETs based on the WSe2, MoSe2, WSe2/CsPbBr2I1-QDs hybrid, and MoSe2/CsPb(Cl/Br)3-QDs hybrid, the p-channel current (with hole mobility) is considerably decreased after the hybridization with the QDs. Notably, under incident light, the n-channel photocurrent and photoresponsivity of the FET are substantially increased, and the threshold voltage is negatively shifted owing to the hybridization with the perovskite QDs. The results show that the photosensitive n-type doping effect on the 2D MoSe2 and WSe2 nanosystems originates from the photogating effect by the trap states after the hybridization with various perovskite CsPbX3-QDs.

4.
J Phys Chem Lett ; 11(1): 1-6, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31794224

ABSTRACT

This study demonstrates the influence of the orbit-orbit interaction on the photoluminescence quantum efficiency (PLQE) of metal halide perovskite quantum dots (QDs) through the Rashba effect. The orbit-orbit interaction between excitons was characterized by using the minimal excitation intensity required to generate a photoluminescence difference (ΔPL) between linearly and circularly polarized photoexcitations. It was observed that changing the surface functionalization from PFOA-OA to PFSH-OAm and OA can largely increase the minimal excitation intensity for generating ΔPL. This indicates that the orbit-orbit interaction is essentially decreased in CsPbBr1I2 QDs with surface functionalization. Simultaneously, the PLQE is increased from 39% to 59 and 72% in CsPbBr1I2 QDs upon surface functionalization. Furthermore, the PL lifetime is decreased with increasing the PLQE in CsPbBr1I2 QDs upon surface functionalization. This phenomenon implies that decreasing the orbit-orbit interaction can essentially weaken the Rashba effect and consequently reduce the disallowed transitions, leading to an enhancement in the PLQE in perovskite QDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...