Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
Add more filters










Publication year range
1.
Mater Horiz ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835315

ABSTRACT

The octahedral symmetry in ionic crystals can play a critical role in atomic nucleation and migration during solid-solid phase transformation. Similarly, octahedron distortion, which is characterized by Goldschmidt tolerance factor, strongly influences the exsolution kinetics in the perovskite lattice framework during high-temperature annealing. However, a fundamental study on manipulating the exsolution process by octahedron distortion is still lacking. In this study, we accelerate Ni metal exsolution on the surface of perovskite stannates by increasing the [BO6] octahedron distortion in the lattices. Decreasing the A-site ionic radius (rBa2+ = 161 pm → rSr2+ = 144 pm → rCa2+ = 134 pm) increased the density of exsolved Ni nanoparticles by up to 640% (i.e., 47 particles µm-2 of Ba(Sn, Ni)O3 → 304 particles µm-2 of Ca(Sn, Ni)O3) after the identical exsolution process. Based on the theoretical calculation and experimental characterization, the decrease in crystal symmetry by octahedral distortion promoted the Ni exsolution owing to the boosted Ni migration by weakening the bond strength and generating domain boundaries. The findings highlight the importance of octahedral distortion to control atomic migration through the perovskite lattice framework and provide a strategy to tailor the density of uniformly populated nanoparticles in nanocomposite oxides for multifunctional material design.

2.
Nat Commun ; 15(1): 3887, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719801

ABSTRACT

In the early 2000s, low dimensional ferroelectric systems were predicted to have topologically nontrivial polar structures, such as vortices or skyrmions, depending on mechanical or electrical boundary conditions. A few variants of these structures have been experimentally observed in thin film model systems, where they are engineered by balancing electrostatic charge and elastic distortion energies. However, the measurement and classification of topological textures for general ferroelectric nanostructures have remained elusive, as it requires mapping the local polarization at the atomic scale in three dimensions. Here we unveil topological polar structures in ferroelectric BaTiO3 nanoparticles via atomic electron tomography, which enables us to reconstruct the full three-dimensional arrangement of cation atoms at an individual atom level. Our three-dimensional polarization maps reveal clear topological orderings, along with evidence of size-dependent topological transitions from a single vortex structure to multiple vortices, consistent with theoretical predictions. The discovery of the predicted topological polar ordering in nanoscale ferroelectrics, independent of epitaxial strain, widens the research perspective and offers potential for practical applications utilizing contact-free switchable toroidal moments.

3.
Sci Adv ; 10(21): eadk4288, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787951

ABSTRACT

KTaO3 heterostructures have recently attracted attention as model systems to study the interplay of quantum paraelectricity, spin-orbit coupling, and superconductivity. However, the high and low vapor pressures of potassium and tantalum present processing challenges to creating heterostructure interfaces clean enough to reveal the intrinsic quantum properties. Here, we report superconducting heterostructures based on high-quality epitaxial (111) KTaO3 thin films using an adsorption-controlled hybrid PLD to overcome the vapor pressure mismatch. Electrical and structural characterizations reveal that the higher-quality heterostructure interface between amorphous LaAlO3 and KTaO3 thin films supports a two-dimensional electron gas with substantially higher electron mobility, superconducting transition temperature, and critical current density than that in bulk single-crystal KTaO3-based heterostructures. Our hybrid approach may enable epitaxial growth of other alkali metal-based oxides that lie beyond the capabilities of conventional methods.

4.
Nano Lett ; 24(23): 7100-7107, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38810235

ABSTRACT

Current-induced spin-orbit torque (SOT) offers substantial promise for the development of low-power, nonvolatile magnetic memory. Recently, a single-phase material concurrently exhibiting magnetism and the spin Hall effect has emerged as a scientifically and technologically interesting platform for realizing efficient and compact SOT systems. Here, we demonstrate external-magnetic-field-free switching of perpendicular magnetization in a single-phase ferromagnetic and spin Hall oxide SrRuO3. We delicately altered the local lattices of the top and bottom surface layers of SrRuO3, while retaining a quasi-homogeneous, single-crystalline nature of the SrRuO3 bulk. This leads to unbalanced spin Hall effects between the top and bottom layers, enabling net SOT performance within single-layer ferromagnetic SrRuO3. Notably, our SrRuO3 exhibits the highest SOT efficiency and lowest power consumption among all known single-layer systems under field-free conditions. Our method of artificially manipulating the local atomic structures will pave the way for advances in spin-orbitronics and the exploration of new SOT materials.

5.
ACS Macro Lett ; 13(5): 528-536, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38629344

ABSTRACT

We report the complexation of poly(ethylene glycol) conjugated double-stranded oligoDNA (PEG-(ds)oligoDNA) with imidazolium-based ionic liquids (ILs) to form polyelectrolyte complex aggregates (PCAs). The PEG-(ds)oligoDNA conjugates are prepared following a solution-phase coupling reaction. The binding of PEG-(ds)oligoDNA with either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) or 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]) is confirmed by a fluorescence displacement assay. Both ILs show stronger binding affinity to PEG-(ds)oligoDNA than bare (ds)oligoDNA due to the PEG-assisted increase in IL cation concentration in the vicinity of (ds)oligoDNA. The complex morphology formed at various amine (N) to phosphate (P) ratios is also examined. At high N/P ratios above 4, nanosized PCAs are formed, driven by a counterion-mediated attraction among the IL-bound (ds)oligoDNA segments and stabilized by the conjugated PEG segments. The PCAs exhibit near-neutral surface charges and resistance to DNase degradation, suggesting their potential use in gene delivery applications.

6.
iScience ; 27(4): 109556, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38617558

ABSTRACT

To achieve the successful separation of emulsions containing fine dispersed droplets and low volume fractions, a membrane with pore sizes comparable to or smaller than the droplet size is typically required. Although this approach is effective, its utilization is limited to the separation of emulsions with relatively large droplets. To overcome this limitation, a secondary membrane can be formed on the primary membrane to reduce pore size, but this can also be time-consuming and costly. Therefore, a facile and effective method is still required to be developed for separating emulsions with fine droplets. We introduce a pre-wetted mesh membrane with a pore size significantly larger than droplets, easily fabricated by wetting a hydrophilic stainless-steel mesh with water. Applying this membrane to emulsion separation via gravity-driven flow confirms a high efficiency greater than 98%, even with droplets approximately 10 times smaller than the pore size.

7.
Sci Adv ; 10(14): eadk8836, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578998

ABSTRACT

Electrical manipulation of the metal-insulator transition (MIT) in quantum materials has attracted considerable attention toward the development of ultracompact neuromorphic devices because of their stimuli-triggered transformations. VO2 is expected to undergo abrupt electronic phase transition by piezo strain near room temperature; however, the unrestricted integration of defect-free VO2 films on piezoelectric substrates is required to fully exploit this emerging phenomenon in oxide heterostructures. Here, we demonstrate the integration of single-crystalline VO2 films on highly lattice-mismatched PMN-PT piezoelectric substrates using a single-crystal TiO2-nanomembrane (NM) template. Using our strategy on heterogeneous integration, single-crystal-like steep transition was observed in the defect-free VO2 films on TiO2-NM-PMN-PT. Unprecedented TMI modulation (5.2 kelvin) and isothermal resistance of VO2 [ΔR/R (Eg) ≈ 18,000% at 315 kelvin] were achieved by the efficient strain transfer-induced MIT, which cannot be achieved using directly grown VO2/PMN-PT substrates. Our results provide a fundamental strategy to realize a single-crystalline artificial heterojunction for promoting the application of artificial neurons using emergent materials.

8.
J Oleo Sci ; 73(4): 437-444, 2024.
Article in English | MEDLINE | ID: mdl-38556278

ABSTRACT

Polyhexamethylene guanidine (PHMG) is a guanidine-based chemical that has long been used as an antimicrobial agent. However, recently raised concerns regarding the pulmonary toxicity of PHMG in humans and aquatic organisms have led to research in this area. Along with PHMG, there are concerns about the safety of non-guanidine 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) in human lungs; however, the safety of such chemicals can be affected by many factors, and it is difficult to rationalize their toxicity. In this study, we investigated the adsorption characteristics of CMIT/ MIT on a model pulmonary surfactant (lung surfactant, LS) using a Langmuir trough attached to a fluorescence microscope. Analysis of the π-A isotherms and lipid raft morphology revealed that CMIT/MIT exhibited minimal adsorption onto the LS monolayer deposited at the air/water interface. Meanwhile, PHMG showed clear signs of adsorption to LS, as manifested by the acceleration of the L o phase growth with increasing surface pressure. Consequently, in the presence of CMIT/MIT, the interfacial properties of the model LS monolayer exhibited significantly fewer changes than PHMG.


Subject(s)
Anti-Infective Agents , Disinfectants , Pulmonary Surfactants , Humans , Adsorption , Lung , Guanidines/chemistry , Guanidine
9.
Nat Commun ; 15(1): 1180, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332134

ABSTRACT

Charge ordering (CO), characterized by a periodic modulation of electron density and lattice distortion, has been a fundamental topic in condensed matter physics, serving as a potential platform for inducing novel functional properties. The charge-ordered phase is known to occur in a doped system with high d-electron occupancy, rather than low occupancy. Here, we report the realization of the charge-ordered phase in electron-doped (100) SrTiO3 epitaxial thin films that have the lowest d-electron occupancy i.e., d1-d0. Theoretical calculation predicts the presence of a metastable CO state in the bulk state of electron-doped SrTiO3. Atomic scale analysis reveals that (100) surface distortion favors electron-lattice coupling for the charge-ordered state, and triggering the stabilization of the CO phase from a correlated metal state. This stabilization extends up to six unit cells from the top surface to the interior. Our approach offers an insight into the means of stabilizing a new phase of matter, extending CO phase to the lowest electron occupancy and encompassing a wide range of 3d transition metal oxides.

10.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328161

ABSTRACT

Skeletal metastasis is common in patients with advanced breast cancer, and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow, but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, we have utilized a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. Our results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increased their glycocalyx thickness while enhancing resistance to attack by Natural Killer (NK) cells. These changes were functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, our results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.

11.
Nat Commun ; 15(1): 711, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331881

ABSTRACT

Development of coating technologies for electrochemical sensors that consistently exhibit antifouling activities in diverse and complex biological environments over extended time is vital for effective medical devices and diagnostics. Here, we describe a micrometer-thick, porous nanocomposite coating with both antifouling and electroconducting properties that enhances the sensitivity of electrochemical sensors. Nozzle printing of oil-in-water emulsion is used to create a 1 micrometer thick coating composed of cross-linked albumin with interconnected pores and gold nanowires. The layer resists biofouling and maintains rapid electron transfer kinetics for over one month when exposed directly to complex biological fluids, including serum and nasopharyngeal secretions. Compared to a thinner (nanometer thick) antifouling coating made with drop casting or a spin coating of the same thickness, the thick porous nanocomposite sensor exhibits sensitivities that are enhanced by 3.75- to 17-fold when three different target biomolecules are tested. As a result, emulsion-coated, multiplexed electrochemical sensors can carry out simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid, antigen, and host antibody in clinical specimens with high sensitivity and specificity. This thick porous emulsion coating technology holds promise in addressing hurdles currently restricting the application of electrochemical sensors for point-of-care diagnostics, implantable devices, and other healthcare monitoring systems.


Subject(s)
Biofouling , Biosensing Techniques , Nanocomposites , Porosity , Emulsions , Antibodies , Electrochemical Techniques
12.
ACS Nano ; 18(9): 6927-6935, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38374663

ABSTRACT

Point defects dictate various physical, chemical, and optoelectronic properties of two-dimensional (2D) materials, and therefore, a rudimentary understanding of the formation and spatial distribution of point defects is a key to advancement in 2D material-based nanotechnology. In this work, we performed the demonstration to directly probe the point defects in 2H-MoTe2 monolayers that are tactically exposed to (i) 200 °C-vacuum-annealing and (ii) 532 nm-laser-illumination; and accordingly, we utilize a deep learning algorithm to classify and quantify the generated point defects. We discovered that tellurium-related defects are mainly generated in both 2H-MoTe2 samples; but interestingly, 200 °C-vacuum-annealing and 532 nm-laser-illumination modulate a strong n-type and strong p-type 2H-MoTe2, respectively. While 200 °C-vacuum-annealing generates tellurium vacancies or tellurium adatoms, 532 nm-laser-illumination prompts oxygen atoms to be adsorbed/chemisorbed at tellurium vacancies, giving rise to the p-type characteristic. This work significantly advances the current understanding of point defect engineering in 2H-MoTe2 monolayers and other 2D materials, which is critical for developing nanoscale devices with desired functionality.

13.
Nano Lett ; 24(2): 681-687, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38185873

ABSTRACT

Despite the importance of the enantioselective transport of amino acids through transmembrane protein nanopores from fundamental and practical perspectives, little has been explored to date. Here, we study the transport of amino acids through α-hemolysin (αHL) protein pores incorporated into a free-standing lipid membrane. By measuring the transport of 13 different amino acids through the αHL pores, we discover that the molecular size of the amino acids and their capability to form hydrogen bonds with the pore surface determine the chiral selectivity. Molecular dynamics simulations corroborate our findings by revealing the enantioselective molecular-level interactions between the amino acid enantiomers and the αHL pore. Our work is the first to present the determinants for chiral selectivity using αHL protein as a molecular filter.


Subject(s)
Amino Acids , Nanopores , Hemolysin Proteins/chemistry , Molecular Dynamics Simulation , Lipids
14.
Adv Mater ; : e2311505, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279892

ABSTRACT

Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.

15.
Mater Horiz ; 11(3): 747-757, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-37990857

ABSTRACT

Point defects often appear in two-dimensional (2D) materials and are mostly correlated with physical phenomena. The direct visualisation of point defects, followed by statistical inspection, is the most promising way to harness structure-modulated 2D materials. Here, we introduce a deep learning-based platform to identify the point defects in 2H-MoTe2: synergy of unit cell detection and defect classification. These processes demonstrate that segmenting the detected hexagonal cell into two unit cells elaborately cropped the unit cells: further separating a unit cell input into the Te2/Mo column part remarkably increased the defect classification accuracies. The concentrations of identified point defects were 7.16 × 1020 cm2 of Te monovacancies, 4.38 × 1019 cm2 of Te divacancies and 1.46 × 1019 cm2 of Mo monovacancies generated during an exfoliation process for TEM sample-preparation. These revealed defects correspond to the n-type character mainly originating from Te monovacancies, statistically. Our deep learning-oriented platform combined with atomic structural imaging provides the most intuitive and precise way to analyse point defects and, consequently, insight into the defect-property correlation based on deep learning in 2D materials.

16.
Nat Commun ; 14(1): 8015, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049424

ABSTRACT

Liquid-liquid phase separation of proteins occurs on both surfaces of cellular membranes during diverse physiological processes. In vitro reconstitution could provide insight into the mechanisms underlying these events. However, most existing reconstitution techniques provide access to only one membrane surface, making it difficult to probe transmembrane phenomena. To study protein phase separation simultaneously on both membrane surfaces, we developed an array of freestanding planar lipid membranes. Interestingly, we observed that liquid-like protein condensates on one side of the membrane colocalized with those on the other side, resulting in transmembrane coupling. Our results, based on lipid probe partitioning and mobility of lipids, suggest that protein condensates locally reorganize membrane lipids, a process which could be explained by multiple effects. These findings suggest a mechanism by which signals originating on one side of a biological membrane, triggered by protein phase separation, can be transferred to the opposite side.


Subject(s)
Lipids , Proteins , Proteins/metabolism , Cell Membrane/metabolism
17.
Nanomaterials (Basel) ; 13(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37630937

ABSTRACT

The characteristics of water vapor adsorption depend on the structure, porosity, and functional groups of the material. Metal-organic framework (MOF)-derived carbon (MDC) is a novel material that exhibits a high specific area and tunable pore sizes by exploiting the stable structure and porosity of pure MOF materials. Herein, two types of aluminum-based MOFs were used as precursors to synthesize hydrophobic microporous C-MDC and micro-mesoporous A-MDC via carbonization and activation depending on the type of ligands in the precursors. C-MDC and A-MDC have different pore characteristics and exhibit distinct water adsorption properties. C-MDC with hydrophobic properties and micropores exhibited negligible water adsorption (108.54 mgg-1) at relatively low pressures (P/P0~0.3) but showed a rapid increase in water adsorption ability (475.7 mgg-1) at relative pressures of about 0.6. A comparison with the isotherm model indicated that the results were consistent with the theories, which include site filling at low relative pressure and pore filling at high relative pressure. In particular, the Do-Do model specialized for type 5 showed excellent agreement.

18.
Microsc Microanal ; 29(Supplement_1): 1633, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37613782
SELECTION OF CITATIONS
SEARCH DETAIL
...