Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathology ; 36(1): 93-102, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26350538

ABSTRACT

Central nervous system (CNS) involvement by rheumatoid arthritis (RA) in the form of rheumatoid meningitis (RM) is rare and most commonly occurs in the setting of longstanding severe RA. Due to a wide range of clinical presentations and nonspecific laboratory findings, it presents a diagnostic challenge often requiring brain biopsy. Only a few histopathologically confirmed cases have been described in the literature. Our aim is to describe two cases of RM and review the literature. The first case is of a previously healthy 37-year-old man who presented with severe headaches and focal neurologic deficits. Magnetic resonance imaging demonstrated abnormal leptomeningeal enhancement in the left frontal and parietal sulci. The second case is of a 62-year-old woman with a history of mild chronic joint pain who presented with confusion, personality changes and seizures. Both patients ultimately underwent brain biopsy which demonstrated RM on pathologic examination. Administration of corticosteroids resulted in significant clinical improvement in both cases. To our knowledge, our unusual case of RM in the young man is the fifth reported case of rheumatoid meningitis in a patient with no prior history of RA. Such an atypical presentation makes diagnosis even more difficult and highlights the need for awareness of this entity in the diagnostic consideration of a patient presenting with unexplained neurologic symptoms. Our literature review underscores the clinical and pathologic heterogeneity of CNS involvement in RA.


Subject(s)
Arthritis, Rheumatoid/pathology , Meningitis/pathology , Adrenal Cortex Hormones/therapeutic use , Adult , Anti-Inflammatory Agents/therapeutic use , Arthralgia/etiology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/psychology , Brain/pathology , Dexamethasone/therapeutic use , Female , Humans , Magnetic Resonance Imaging , Male , Meningitis/drug therapy , Meningitis/psychology , Middle Aged , Neurosurgical Procedures , Quadriplegia/etiology
2.
Cerebellum ; 11(4): 887-95, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22258915

ABSTRACT

Although "cerebellar ataxia" is often used in reference to a disease process, presumably there are different underlying pathogenetic mechanisms for different subtypes. Indeed, spinocerebellar ataxia (SCA) types 2 and 6 demonstrate complementary phenotypes, thus predicting a different anatomic pattern of degeneration. Here, we show that an unsupervised classification method, based on principal component analysis (PCA) of cerebellar shape characteristics, can be used to separate SCA2 and SCA6 into two classes, which may represent disease-specific archetypes. Patients with SCA2 (n=11) and SCA6 (n=7) were compared against controls (n=15) using PCA to classify cerebellar anatomic shape characteristics. Within the first three principal components, SCA2 and SCA6 differed from controls and from each other. In a secondary analysis, we studied five additional subjects and found that these patients were consistent with the previously defined archetypal clusters of clinical and anatomical characteristics. Secondary analysis of five subjects with related diagnoses showed that disease groups that were clinically and pathophysiologically similar also shared similar anatomic characteristics. Specifically, Archetype #1 consisted of SCA3 (n=1) and SCA2, suggesting that cerebellar syndromes accompanied by atrophy of the pons may be associated with a characteristic pattern of cerebellar neurodegeneration. In comparison, Archetype #2 was comprised of disease groups with pure cerebellar atrophy (episodic ataxia type 2 (n=1), idiopathic late-onset cerebellar ataxias (n=3), and SCA6). This suggests that cerebellar shape analysis could aid in discriminating between different pathologies. Our findings further suggest that magnetic resonance imaging is a promising imaging biomarker that could aid in the diagnosis and therapeutic management in patients with cerebellar syndromes.


Subject(s)
Cerebellum/pathology , Spinocerebellar Ataxias/pathology , Adult , Age of Onset , Atrophy/pathology , Cerebellum/physiopathology , Diagnosis, Differential , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Phenotype , Principal Component Analysis , Spinocerebellar Ataxias/physiopathology
3.
Cerebellum ; 11(1): 272-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21850525

ABSTRACT

In this study, we used manual delineation of high-resolution magnetic resonance imaging (MRI) to determine the spatial and temporal characteristics of the cerebellar atrophy in spinocerebellar ataxia type 2 (SCA2). Ten subjects with SCA2 were compared to ten controls. The volume of the pons, the total cerebellum, and the individual cerebellar lobules were calculated via manual delineation of structural MRI. SCA2 showed substantial global atrophy of the cerebellum. Furthermore, the degeneration was lobule specific, selectively affecting the anterior lobe, VI, Crus I, Crus II, VIII, uvula, corpus medullare, and pons, while sparing VIIB, tonsil/paraflocculus, flocculus, declive, tuber/folium, pyramis, and nodulus. The temporal characteristics differed in each cerebellar subregion: (1) duration of disease: Crus I, VIIB, VIII, uvula, corpus medullare, pons, and the total cerebellar volume correlated with the duration of disease; (2) age: VI, Crus II, and flocculus correlated with age in control subjects; and (3) clinical scores: VI, Crus I, VIIB, VIII, corpus medullare, pons, and the total cerebellar volume correlated with clinical scores in SCA2. No correlations were found with the age of onset. Our extrapolated volumes at the onset of symptoms suggest that neurodegeneration may be present even during the presymptomatic stages of disease. The spatial and temporal characteristics of the cerebellar degeneration in SCA2 are region specific. Furthermore, our findings suggest the presence of presymptomatic atrophy and a possible developmental component to the mechanisms of pathogenesis underlying SCA2. Our findings further suggest that volumetric analysis may aid in the development of a non-invasive, quantitative biomarker.


Subject(s)
Cerebellum/pathology , Magnetic Resonance Imaging/methods , Spinocerebellar Ataxias/pathology , Adult , Aged , Atrophy/pathology , Biomarkers/metabolism , Brain Mapping/methods , Case-Control Studies , Female , Humans , Male , Middle Aged , Spinocerebellar Ataxias/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...