Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(5): 1256-1265, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38288748

ABSTRACT

Salt concentration-dependent structure of complex coacervate core micelles (C3Ms), formed by polyether-based block copolyelectrolytes containing cationic ammonium (A) or anionic sulfonate (S) groups in aqueous media, is investigated by light scattering and small-angle X-ray/neutron scattering (SAX/NS). As the salt concentration increases, both a core radius (Rcore) and an aggregation number (Nagg) significantly decrease, but a corona thickness (Lcorona) is nearly unchanged. Larger salt concentrations can lower the interfacial tension between the coacervate cores and aqueous media, resulting in an increased interfacial area per chain and a more relaxed conformation of the core blocks. Based on the structure characterization, the scaling relationship between structure parameters (i.e., Rcore, Nagg, and Lcorona) and salt concentration is obtained and compared to the theoretical description estimated by the free energy balance between the entropic penalty of core stretching and the interfacial energy. We propose that the free energy contribution of the core block stretching is not negligible in C3Ms because of the highly swollen cores caused by water.

3.
ACS Macro Lett ; 12(10): 1396-1402, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37782013

ABSTRACT

The scaling relationship of complex coacervate core micelles (C3Ms) has been investigated experimentally and theoretically. The C3Ms are formed by mixing two oppositely charged block copolyelectrolyte solutions (i.e., AB + AC system) and are characterized by small-angle neutron (SANS) and X-ray scattering (SAXS). Scaling relationships for micellar structure parameters, including core radius, total radius, corona thickness, and aggregation number, all with respect to the core block length, are determined. A scaling theory is also proposed by minimizing the free energy per chain, leading to four regimes depending on the core and corona chain conformations. Although the corona block is significantly longer than the core block, the structure of our C3Ms is consistent with that of the crew-cut I regime. A highly swollen core by water enables the core blocks to be stretched significantly and corona chains to be minimally overlapped.

4.
Soft Matter ; 18(21): 4146-4155, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35583260

ABSTRACT

This study investigates the nanostructure of complex coacervate core hydrogels (C3Gs) with varying compositions of cationic charged groups (i.e., ammonium and guanidinium) using small-angle X-ray/neutron scattering (SAX/NS). C3Gs were prepared by stoichiometric mixing of two oppositely charged ABA triblock copolymers in aqueous solvents, in which A end-blocks were functionalized with either sulfonate groups or a mixture of ammonium and guanidinium groups. Comprehensive small-angle X-ray/neutron scattering (SAX/NS) analysis elucidated the dependence of C3Gs structures on the fraction of guanidinium groups in the cationic end-block (x) and salt concentration (cs). As x increases, the polymer volume fraction in the cores, and interfacial tension (γcore) and salt resistance (c*) of the coacervate cores increase, which is attributed to the greater hydrophobicity and non-electrostatic association. Furthermore, we observed that the salt dependence of the interfacial tension follows γcore ∼ (1 - cs/c*)3/2 in all series of x. The results show that the variation of the ionic group provides a powerful method to control the salt-responsiveness of C3Gs as stimuli-responsive materials.

5.
Sci Rep ; 12(1): 4548, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296763

ABSTRACT

The two-dimensional (2D) assembly of gold nanoparticles (AuNPs) in a confined geometry is a rare phenomenon that has not been experimentally verified for complex systems. In this study, this process was investigated in detail using two types of block copolymers with hydrophobic and hydrophilic blocks and a series of AuNPs of three different sizes protected by hydrophobic ligands. In aqueous solutions, the selected block copolymers self-assembled into vesicular nanostructures with a hydrophobic domain in the wall, which functions as a confined geometrical space for hydrophobic AuNPs (i.e., it exerts a confinement effect and restricts the movement of AuNPs). Small-angle X-ray scattering studies revealed that AuNPs of different sizes assembled differently in the same confined geometry of the vesicular wall. In addition, optimal conditions for the formation of a regular NP array in the hydrophobic domain were determined. The AuNPs successfully self-assembled into a regular 2D lattice structure, forming a shell around the vesicle, when their size matched the thickness of the hydrophobic domain of the vesicular nanostructure. This study provides guidelines for the fabrication of nanoparticle arrays with controlled structures, which could enhance the functionality of materials and their physical properties.

6.
Macromol Rapid Commun ; 43(12): e2100618, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34738689

ABSTRACT

ABC triblock copolymers composed of hydrophobic poly(ε-caprolactone) (PCL), zwitterionic poly(carboxybetaine methacrylate) midblock, and P(PEGMA-UPy0.15 ) containing supramolecular ureidopyrimidinone moieties, poly(ε-caprolactone-block-carboxybetaine methacrylate-block-[poly(ethylene glycol) methyl ether methacrylate-co-(α-methacryloyl-ω-(6-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)hexylcarbamoyloxy)poly(ethylene glycol))]), are investigated to achieve multifunctional antifreeze hydrogels. The PCL and P(PEGMA-UPy0.15 ) blocks induce the formation of physical network with a hierarchical nanostructure comprising hydrophobic PCL cores and supramolecular junctions, respectively. The super-hydrophilic nature of polyzwitterion midblocks and the confinement effect of the supramolecular junctions enhance the antifreeze performance, where the majority of water molecules remains supercooled below sub-zero temperature. The hydrogel relaxation characterized over a wide range of timescale reveals that the facile dynamics of the supramolecular junctions lead to the self-healing and injectability of the hydrogels. In conjunction with the biodegradable PCL cores, the antifreeze and rheological characteristics of the triblock copolymer hydrogels provide significant potential to use for cryo-preservable and bio-injectable drug storage and delivery.


Subject(s)
Hydrogels , Polyesters , Hydrogels/chemistry , Methacrylates , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry
7.
J Phys Chem Lett ; 12(28): 6736-6743, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34264079

ABSTRACT

Self-assembly of gold nanoparticles (AuNPs) into highly ordered superstructures provides a promising route toward fabricating materials with new functionalities or enhanced physical properties. Although self-assembly of AuNPs has garnered significant research attention recently, a highly ordered superlattice of AuNPs under a low concentration in a confined geometry formed by nonfunctionalized materials has not been reported. Herein, we investigate the self-assembly of a 2D AuNPs superlattice in a polymer vesicle layer using hydrophobic interactions, which exhibits centered rectangular lattice symmetry. To create the highly ordered AuNPs superlattice, the P(EGx-b-iPGEy) block copolymers that form the thickness of the hydrophobic vesicle layer comparable to the size of the AuNP are used as a template to control the AuNP degree of freedom. To the best of our knowledge, this study provides the first demonstration of a centered rectangular structure formation of AuNPs at the vesicle layer in 2D confined geometry.


Subject(s)
Gold/chemistry , Hydrophobic and Hydrophilic Interactions , Metal Nanoparticles/chemistry , Polymers/chemistry , Models, Molecular , Molecular Conformation , Particle Size
8.
Adv Mater ; 33(29): e2100321, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34060148

ABSTRACT

Following early research efforts devoted to achieving excellent sensitivity of electronic skins, recent design schemes for these devices have focused on strategies for transduction of spatially resolved sensing data into straightforward user-adaptive visual signals. Here, a material platform capable of transducing mechanical stimuli into visual readout is presented. The material layer comprises a mixture of an ionic transition metal complex luminophore and an ionic liquid (capable of producing electrochemiluminescence (ECL)) within a thermoplastic polyurethane matrix. The proposed material platform shows visco-poroelastic response to mechanical stress, which induces a change in the distribution of the ionic luminophore in the film, which is referred to as the piezo-ionic effect. This piezo-ionic effect is exploited to develop a simple device containing the composite layer sandwiched between two electrodes, which is termed "ECL skin". Emission from the ECL skin is examined, which increases with the applied normal/tensile stress. Additionally, locally applied stress to the ECL skin is spatially resolved and visualized without the use of spatially distributed arrays of pressure sensors. The simple fabrication and unique operation of the demonstrated ECL skin are expected to provide new insights into the design of materials for human-machine interactive electronic skins.


Subject(s)
Luminescent Measurements , Humans , Ionic Liquids , Wearable Electronic Devices
9.
Biomacromolecules ; 22(6): 2604-2613, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34038105

ABSTRACT

Elastin-like polypeptides (ELPs) are stimulus-responsive protein-based biopolymers, and some ELP block copolymers can assemble into spherical nanoparticles with thermosensitivity. In this study, two different ELP diblock copolymers, each composed of a hydrophobic and a charged moiety, were synthesized, and the dependence of their physical properties on pH, temperature, and salt concentration was investigated. A series of analyses revealed that hydrophobic core micelles could be generated in response to a change in their surroundings and that micelles did not self-aggregate, a phenomenon due to the repulsive forces between like-charged molecules on the surface. We also demonstrated that self-assembly behavior was closely dependent on the character of the charged amino acid and the specific anion in solution.


Subject(s)
Elastin , Nanoparticles , Hydrophobic and Hydrophilic Interactions , Micelles , Peptides , Temperature
10.
Int J Biol Macromol ; 177: 284-293, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33610606

ABSTRACT

Formate is a promising environmentally friendly and sustainable feedstock synthesized from syngas or carbon dioxide. Methylorubrum extorquens is a type II methylotroph that can use formate as a carbon source. It accumulates polyhydroxyalkanoates (PHAs) inside the cell, mainly producing poly-3-hydroxybutyrate (PHB), a degradable biopolymer. Owing to its high melting point and stiff nature, however, mechanical property improvement is warranted in the form of copolymerization. To produce the PHA copolymer, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the endogenous gene phaC was deleted and the pathway genes bktB, phaJ1, and phaC2, with broader substrate specificities, were heterologously expressed. To improve the incorporation of 3-hydroxyvalerate (3HV), the expression level of bktB was improved by untranslated region (UTR) engineering, and the endogenous gene phaA was deleted. The engineered M. extorquens produced PHBV with 8.9% 3HV using formate as the sole carbon source. In addition, when propionate and butyrate were supplemented, PHBVs with 3HV portions of up to 70.6% were produced. This study shows that a PHBV copolymer with a high proportion of 3HV can be synthesized using formate, a C1 carbon source, through metabolic engineering and supplementation with short-chain fatty acids.


Subject(s)
Bacterial Proteins , Formates/metabolism , Metabolic Engineering , Methylobacteriaceae , Microorganisms, Genetically-Modified , Polyhydroxyalkanoates , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydroxybutyrates/metabolism , Methylobacteriaceae/genetics , Methylobacteriaceae/metabolism , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Polyesters/metabolism , Polyhydroxyalkanoates/biosynthesis , Polyhydroxyalkanoates/genetics
11.
ACS Macro Lett ; 10(9): 1138-1144, 2021 09 21.
Article in English | MEDLINE | ID: mdl-35549078

ABSTRACT

Molecular exchange dynamics between spherical complex coacervate core micelles (C3Ms) are documented using time-resolved small-angle neutron scattering measurements (TR-SANS), and the effects of salt concentration, type of charges, and core block polydispersity to the chain exchange are quantified. Isotopically labeled block copolyelectrolytes were prepared by postpolymerization modification of two nearly identical poly(ethylene oxide-b-allyl glycidyl ether), one with normal and the other with deuterated PEO blocks (i.e., hPEO-PAGE and dPEO-PAGE). The observed rates at multiple salt concentrations are consolidated using time-salt superposition shift factors representing chain exchange rates and analyzed. Our comprehensive analytical relaxation function based on the sticky-Rouse model and the thermodynamic barrier for core block extraction successfully describes the molecular exchange kinetics between the isotopically labeled C3Ms. We believe this work provides fundamental design criteria for C3Ms with engineered chain exchange dynamics.


Subject(s)
Micelles , Polyethylene Glycols , Kinetics , Scattering, Small Angle , Sodium Chloride , Thermodynamics
12.
ACS Macro Lett ; 10(8): 1080-1087, 2021 08 17.
Article in English | MEDLINE | ID: mdl-35549123

ABSTRACT

While the hydrolytic cleavage of ester groups is widely exploited in degradable hydrogels, the scission in the midst of chain backbones can bring dramatic changes in the mechanical properties of the hydrogels. However, the predictive design of the mechanical profile of the hydrogels is a complex task, mainly due to the randomness of the location of chain scission. To overcome this challenge, we herein present degradable ABA triblock poly(ethylene oxide)-based hydrogels containing an A-block bearing acetal pendant, which provides systematically tunable mechano-temporal properties of the hydrogels. In particular, hydrophobic endocyclic tetrahydropyranyl or exocyclic 1-(cyclohexyloxy)ethyl acetal pendants are gradually cleaved by acidic hydrolysis, leading to the gel-to-sol transition at room temperature. Most importantly, a series of dynamic mechanical analyses coupled with ex situ NMR spectroscopy revealed that the hydrolysis rate can be orthogonally and precisely tuned by changing the chemical structure and hydrophobicity of acetal pendants. This study provides a platform for the development of versatile degradable hydrogels in a highly controllable manner.


Subject(s)
Acetals , Hydrogels , Hydrogels/chemistry , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Polyethylene Glycols/chemistry
13.
Biomacromolecules ; 21(12): 4913-4922, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33064456

ABSTRACT

Stimuli-responsive smart hydrogels have garnered considerable interest for their potential in biomedical applications. While widely utilized, little is known about the rheological and mechanical properties of the hydrogels with respect to the type of cross-linker in a systematic manner. In this study, we present a facile synthetic route toward ABA triblock copolymer hydrogels based on poly(ethylene oxide) (PEO). Two classes of hydrogels were prepared by employing the functional allyl glycidyl ether (AGE) monomer during the polymerization followed by the subsequent post-polymerization modification of prepared PAGE-b-PEO-b-PAGE via respective hydrogenation or thiol-ene reaction: (1) chemically cross-linked hydrogels responsive to redox stimuli and (2) physically cross-linked hydrogels responsive to temperature. A series of dynamic mechanical analyses revealed the relaxation dynamics of the associative A block. Most interestingly, the redox-responsive hydrogels demonstrated a highly tunable nature by introducing reducing and oxidizing agents, which provided the self-healing property and injectability. Together with superior biocompatibility, these smart hydrogels offer the prospect of advancing biomedical applications.


Subject(s)
Ethylene Oxide , Hydrogels , Polyethylene Glycols , Polymerization , Polymers
14.
ACS Macro Lett ; 9(9): 1261-1266, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-35638628

ABSTRACT

We present structural analysis of spherical diblock copolymer micelles where core blocks have bottlebrush architecture. The dependence of the core radius (Rcore) and the corona thickness (Lcorona) on the core block length (Ncore) is investigated using small-angle X-ray scattering (SAXS) and discussed in terms of the stiffness of a core-forming polymer posed by its long fluoroalkyl side chains. The conformation of the core block is strongly stretched, and the measured exponents α and ß from power-law correlations, Rcore ∼ Ncoreα and Lcorona ∼ Ncoreß, respectively, are greater than those from any scaling predictions for block copolymer micelles with a flexible, linear core-block. Such deviations are attributed to the appreciable chain stiffness of the bottlebrush core block, and a simple model is suggested to understand how the core block stiffness influences both the dimensions of core and corona.

15.
Sci Adv ; 5(6): eaav4819, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31187058

ABSTRACT

Colloidal dispersion has elastic properties due to Brownian relaxation process. However, experimental evidence for the elastic properties, characterized with normal stress differences, is elusive in shearing colloidal dispersion, particularly at low Péclet numbers (Pe < 1). Here, we report that single micrometer-sized polystyrene (PS) beads, suspended in silica nanoparticle dispersion (8 nm radius; 22%, v/v), laterally migrate and form a tightly focused stream by the normal stress differences, generated in pressure-driven microtube flow at low Pe. The nanoparticle dispersion was expected to behave as a Newtonian fluid because of its ultrashort relaxation time (2 µs), but large shear strain experienced by the PS beads causes the notable non-Newtonian behavior. We demonstrate that the unique rheological properties of the nanoparticle dispersion generate the secondary flow in perpendicular to mainstream in a noncircular conduit, and the elastic properties of blood plasma-constituting protein solutions are elucidated by the colloidal dynamics of protein molecules.

16.
Polymers (Basel) ; 11(3)2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30960439

ABSTRACT

Pairs of ionic group dependence of the structure of a complex coacervate core micelle (C3M) in an aqueous solution was investigated using DLS, cryo-TEM, and SANS with a contrast matching technique and a detailed model analysis. Block copolyelectrolytes were prepared by introducing an ionic group (i.e., ammonium, guanidinium, carboxylate, and sulfonate) to poly(ethylene oxide-b-allyl glycidyl ether) (NPEO = 227 and NPAGE = 52), and C3Ms were formed by simple mixing of two oppositely-charged block copolyelectrolyte solutions with the exactly same degree of polymerization. All four C3Ms are spherical with narrow distribution of micelle dimension, and the cores are significantly swollen by water, resulting in relatively low brush density of PEO chains on the core surface. With the pair of strong polyelectrolytes, core radius and aggregation number increases, which reflects that the formation of complex coacervates are significantly sensitive to the pairs of ionic groups rather than simple charge pairing.

17.
ACS Macro Lett ; 6(12): 1386-1391, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-35650801

ABSTRACT

We demonstrate a novel approach for fabricating vertically orientated, sub-10 nm, block copolymer (BCP) nanodomains on a substrate via molecular tailoring of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) BCP, one of the most widely used BCPs for nanopatterning. The idea is to incorporate a short middle block of self-attracting poly(methacrylic acid) (PMAA) between the PS and PMMA blocks, where the PMAA middle block promotes phase separation between PS and PMMA, while maintaining the domain orientation perpendicular to the substrate. The designed PS-b-PMAA-b-PMMA triblock copolymers, which were synthesized via well-controlled anionic polymerization, exhibited order-disorder transition temperatures higher than that of pristine PS-b-PMMA BCPs, indicating the promotion of phase separation by the middle PMAA block. For PS-b-PMAA-b-PMMA BCPs with total molecular weights of 21 and 18 kg/mol, the domain spacing corresponds to 19.3 and 16.7 nm, respectively, allowing us to fabricate sub-10 nm nanodomain structures. More importantly, it was demonstrated that the PMAA middle block, which has a higher surface energy than PS and PMMA, does not significantly alter lateral concentration fluctuations, which are responsible for phase-separation in the lateral direction. This enabled the vertical orientation of microdomains with sub-10 nm feature size on a PS-r-PMMA neutral surface without an additional neutral top layer. We anticipate that this approach provides an important platform for next-generation lithography and nanopatterning applications that require sub-10 nm features over large areas with simple process and reduced cost.

18.
ACS Appl Mater Interfaces ; 8(34): 22516-25, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27490161

ABSTRACT

Electrochemical energy storage devices based on electric double layer capacitors (EDLCs) have received considerable attention due to their high power density and potential for obtaining improved energy density in comparison to the lithium ion battery. Ordered mesoporous carbon (OMC) is a promising candidate for use as an EDLC electrode because it has a high specific surface area (SSA), providing a wider charge storage space and size-controllable mesopore structure with a long-range order, suppling high accessibility to the electrolyte ions. However, OMCs fabricated using conventional methods have several drawbacks including low electronic conductivity and long ionic diffusion paths in mesopores. We used nickel nanofoam, which has a relatively small pore (sub-100 nm to subµm) network structure, as a current collector. This provides a significantly shortened electronic/ionic current paths and plentiful surface area, enabling stable and close attachment of OMCs without the use of binders. Thus, we present hierarchical binder-free electrode structures based on OMC/Ni nanofoams. These structures give rise to enhanced specific capacitance and a superior rate capability. We also investigated the mesopore structural effect of OMCs on electrolyte transport by comparing the capacitive performances of collapsed lamellar, cylindrical, and spherical mesopore electrodes. The highly ordered and straightly aligned cylindrical OMCs exhibited the highest specific capacitance and the best rate capability.

19.
J Nanosci Nanotechnol ; 15(2): 1624-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26353703

ABSTRACT

Optical properties of photonic crystal film were investigated by tuning photonic band gap (PBG). The lamellar-forming photonic films were prepared by nearly symmetric poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) block copolymers. Molecular weight of PS block and P2VP block is 52 kg/mol, and 57 kg/mol, respectively. When submerged in water, the lamellar films were swollen and show Bragg reflection in visible light region. We observed that the reflection color can be tuned by ion concentration (e.g., hydrogen or metal ion) in water. The higher concentration of hydrogen ion in solution, the longer reflectance wavelength shifted (from 537 nm to 743 nm). In addition, max-reflectance wavelength is dependent on both metal ion and the concentration. The max-reflectance wavelength is shifted from 653 nm (i.e., in water without ion) to 430 nm, 465 nm, and 505 nm for 120 mM of Ca2+, Fe2+, and Cu2+, respectively. Therefore, we can control the photonic band gap of photonic devices by changing the condition of swelling solution.

20.
ACS Macro Lett ; 4(4): 417-421, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-35596306

ABSTRACT

The phase behavior of mixed polymer ligands anchored on Au nanoparticle surfaces was investigated using small-angle neutron scattering (SANS). An equimolar mixture of deuterated polystyrene (dPS) and normal poly(methyl methacrylate) (PMMA) was attached to Au nanoparticles, and the polymer-grafted nanoparticles were characterized in an isotopic toluene mixture, a good solvent for both homopolymers. Poly(deuterated styrene-ran-methyl methacrylate) (P(dS-r-MMA)) attached to the Au nanoparticles was also characterized as a control case. The results suggest that as the molecular weight increases, the two species of polymers become phase-separated on the nanoparticle surface, resulting in the formation of Janus-type nanoparticles. Monte Carlo simulations for the model polymer-grafted particle system suggest that the effective attraction between the polymers and the particle leads to dense wetting layers of solvophilic polymer blends in the vicinity of the solvophobic particle surface, which plays a decisive role in the formation of the phase-separated morphology.

SELECTION OF CITATIONS
SEARCH DETAIL
...