Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Front Mol Biosci ; 10: 1228640, 2023.
Article in English | MEDLINE | ID: mdl-38482540

ABSTRACT

Introduction: Senescent melanocytes are major contributors to age-related changes in the skin, highlighting the contribution to skin aging. Moreover, prolonged photodamage, such as that caused by UV exposure, can result in melanin accumulation and accelerated melanocyte senescence, thereby exacerbating aging. Melasolv™ is a substance that induces potent depigmentation effects and exhibits low toxicity. The present study aimed to investigate the potential effect of Melasolv™ on senescent melanocytes. Methods: We profiled the transcriptomics of Melasolv™-treated melanocytes and identified the possible mechanism of action (MOA) and targets using connectivity mapping analysis. We identified differentially expressed genes in response to treatment with Melasolv™ and validated the data using quantitative real-time PCR. Moreover, we performed an in vitro ß-gal assay in senescent melanocytes for further validation. Results: Melasolv™ reduced ß-gal and melanin levels in senescent melanocytes. Moreover, the identified MOAs are associated with anti-aging and anti-senescence effects. Discussion: Our findings clearly indicate that Melasolv™ not only exhibits anti-senescent properties but can also potentially alleviate melanin accumulation in senescent cells. These findings could have far-reaching implications in the treatment of age-related photodamaged skin conditions, such as senile lentigo and melasma.

2.
Cells ; 10(3)2021 02 24.
Article in English | MEDLINE | ID: mdl-33668388

ABSTRACT

Ginseng is a traditional herbal medicine in eastern Asian countries. Most active constituents in ginseng are prepared via fermentation or organic acid pretreatment. Extracellular vesicles (EVs) are released by most organisms from prokaryotes to eukaryotes and play central roles in intra- and inter-species communications. Plants produce EVs upon exposure to microbes; however, their direct functions and utility for human health are barely known, except for being proposed as delivery vehicles. In this study, we isolated EVs from ginseng roots (GrEVs) or the culture supernatants of ginseng cells (GcEVs) derived from Panax ginseng C.A. Meyer and investigated their biological effects on human skin cells. GrEV or GcEV treatments improved the replicative senescent or senescence-associated pigmented phenotypes of human dermal fibroblasts or ultraviolet B radiation-treated human melanocytes, respectively, by downregulating senescence-associated molecules and/or melanogenesis-related proteins. Based on comprehensive lipidomic analysis using liquid chromatography mass spectrometry, the lipidomic profile of GrEVs differed from that of the parental root extracts, showing significant increases in 70 of 188 identified lipid species and prominent increases in diacylglycerols, some phospholipids (phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine), and sphingomyelin, revealing their unique vesicular properties. Therefore, our results imply that GEVs represent a novel type of bioactive and sustainable nanomaterials that can be applied to human tissues for improving tissue conditions and targeted delivery of active constituents.


Subject(s)
Chromatography, High Pressure Liquid/methods , Extracellular Vesicles/drug effects , Mass Spectrometry/methods , Panax/chemistry , Plants, Medicinal/chemistry , Skin/drug effects , Cell Proliferation , Humans
3.
J Dermatol Sci ; 90(3): 303-312, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29525471

ABSTRACT

BACKGROUND: Ultraviolet radiation (UVR) is a well-known factor in skin aging and pigmentation, and daily exposure to subcytotoxic doses of UVR might accelerate senescence and senescence-associated phenomena in human melanocytes. OBJECTIVE: To establish an in vitro melanocyte model to mimic the conditions of repeated exposure to subcytotoxic doses of UVB irradiation and to investigate key factor(s) for melanocyte senescence and senescence-associated phenomena. METHODS: Human epidermal melanocytes were exposed twice with 20 mJ/cm2 UVB over a 24-h interval and subsequently cultivated for 2 weeks. Senescent phenotypes were addressed morphologically, and by measuring the senescence-associated ß-galactosidase (SA-ß-Gal) activity, cell proliferation capacity with cell cycle analysis, and melanin content. RESULTS: The established protocol successfully induced melanocyte senescence, and senescent melanocytes accompanied hyperpigmentation. Prolonged expression of p53 was responsible for melanocyte senescence and hyperpigmentation, and treatment with the p53-inhibitor pifithrin-α at 2-weeks post-UVB irradiation, but not at 48 h, significantly reduced melanin content along with decreases in tyrosinase levels. CONCLUSION: Melanocyte senescence model will be useful for studying the long-term effects of UVB irradiation and pigmentation relevant to physiological photoaging, and screening compounds effective for senescence-associated p53-mediated pigmentation.


Subject(s)
Cellular Senescence/radiation effects , Skin Aging/radiation effects , Skin Pigmentation/radiation effects , Tumor Suppressor Protein p53/metabolism , Ultraviolet Rays/adverse effects , Apoptosis/radiation effects , Benzothiazoles/pharmacology , Cell Proliferation/radiation effects , Cells, Cultured , Cellular Senescence/drug effects , Epidermal Cells , Epidermis/pathology , Epidermis/radiation effects , Humans , Infant, Newborn , Male , Melanins/metabolism , Melanocytes/radiation effects , Skin Aging/pathology , Skin Pigmentation/drug effects , Toluene/analogs & derivatives , Toluene/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors
4.
BMC Bioinformatics ; 11: 469, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20849585

ABSTRACT

BACKGROUND: Linking high-throughput experimental data with biological networks is a key step for understanding complex biological systems. Currently, visualization tools for large metabolic networks often result in a dense web of connections that is difficult to interpret biologically. The MetNetGE application organizes and visualizes biological networks in a meaningful way to improve performance and biological interpretability. RESULTS: MetNetGE is an interactive visualization tool based on the Google Earth platform. MetNetGE features novel visualization techniques for pathway and ontology information display. Instead of simply showing hundreds of pathways in a complex graph, MetNetGE gives an overview of the network using the hierarchical pathway ontology using a novel layout, called the Enhanced Radial Space-Filling (ERSF) approach that allows the network to be summarized compactly. The non-tree edges in the pathway or gene ontology, which represent pathways or genes that belong to multiple categories, are linked using orbital connections in a third dimension. Biologists can easily identify highly activated pathways or gene ontology categories by mapping of summary experiment statistics such as coefficient of variation and overrepresentation values onto the visualization. After identifying such pathways, biologists can focus on the corresponding region to explore detailed pathway structure and experimental data in an aligned 3D tiered layout. In this paper, the use of MetNetGE is illustrated with pathway diagrams and data from E. coli and Arabidopsis. CONCLUSIONS: MetNetGE is a visualization tool that organizes biological networks according to a hierarchical ontology structure. The ERSF technique assigns attributes in 3D space, such as color, height, and transparency, to any ontological structure. For hierarchical data, the novel ERSF layout enables the user to identify pathways or categories that are differentially regulated in particular experiments. MetNetGE also displays complex biological pathway in an aligned 3D tiered layout for exploration.


Subject(s)
Information Storage and Retrieval/methods , Metabolic Networks and Pathways , Software , Algorithms , Internet , User-Computer Interface
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(5-6): 482-8, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19157998

ABSTRACT

Because acyl-CoAs play major roles in numerous anabolic and catabolic pathways, the quantitative determination of these metabolites in biological tissues is paramount to understanding the regulation of these metabolic processes. Here, we report a method for the analysis of a collection of short-chain acyl-CoAs (<6 carbon chain length) from plant extracts. Identification of each individual acyl-CoA was conducted by monitoring specific mass-fragmentation ions that are derived from common chemical moieties of all Coenzyme A (CoA) derivatives, namely the adenosine triphosphate nucleotide, pantothenate and acylated cysteamine. This method is robust and quick, enabling the quantitative analysis of up to 12 different acyl-CoAs in plant metabolite extracts with minimal post-extraction processing, using a 30min chromatographic run-time.


Subject(s)
Acyl Coenzyme A/analysis , Arabidopsis/chemistry , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Acyl Coenzyme A/chemistry , Organ Specificity , Plant Leaves/chemistry , Reference Standards , Seedlings/chemistry , Seeds/chemistry
6.
Arch Biochem Biophys ; 448(1-2): 133-40, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16256063

ABSTRACT

We have cloned a novel diterpene synthase (OsKSL11) from rice that produces stemod-13(17)-ene from syn-copalyl diphosphate. Notably, this gene sequence was not predicted from the extensive sequence information available for rice, nor, despite extensive phytochemical investigations, has this diterpene or any derived natural product previously been reported in rice plants. OsKSL11 represents the first identified stemodene synthase, which catalyzes the committed step in biosynthesis of the stemodane family of diterpenoid natural products, some of which possess antiviral activity. In addition, OsKSL11 is highly homologous to the mechanistically similar stemarene synthase recently identified from rice, making this pair of diterpene cyclases an excellent model system for investigating the enzymatic determinants for differential product outcome. The unexpected nature of this cyclase and its product parallels recent observations of previously unrecognized natural products metabolism in Arabidopsis thaliana, suggesting that many, if not all, plant species will prove to have extensive biosynthetic capacity.


Subject(s)
Carbon-Carbon Lyases/chemistry , Diterpenes/chemistry , Oryza/enzymology , Amino Acid Sequence , Carbon-Carbon Lyases/genetics , Enzyme Activation , Molecular Sequence Data , Recombinant Proteins/chemistry
7.
Plant Physiol Biochem ; 42(10): 763-72, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15596095

ABSTRACT

Studies of the regulation of the activity of the Korean radish cationic peroxidase (KRCP) promoter during dedifferentiation and redifferentiation are reported here. Histochemical staining with 5-bromo-4-chloro-indolyl glucuronide (X-gluc) showed that only dedifferentiated marginal cells of leaf discs of the transgenic plants, but not of the interior region, were stained blue, as leaf discs were incubated on dedifferentiation-inducing medium from 5 days after callus induction (DACI). The levels of cationic peroxidase activity and of KRCP transcripts in Korean radish seedlings (Raphanus sativus L. F1 Handsome Fall) were also upregulated by a low ratio of cytokinin to auxin, but not by high concentrations of cytokinin. To identify important cis-regulatory regions controlling callus-specific expression, a series of 5' promoter deletions was carried out with KRCP::GUS gene fusion systems. The data suggest that at least two positively regulatory regions are involved in the KRCP::GUS expression during dedifferentiation induced by a low ratio of cytokinin to auxin: one from -471 to -242 and another from -241 to +196. GUS expression, however, was quickly decreased to a basal level during regeneration of root and shoot. Thus, the downstream region between +197 and +698 seems to be enough to suppress GUS expression of all constructs during regeneration. We further show that the 142-bp fragment (-471 to -328) has at least one cis-element to bind to the nuclear proteins from Korean radish seedlings induced by dedifferentiation.


Subject(s)
Peroxidases/genetics , Plant Leaves/enzymology , Promoter Regions, Genetic , Raphanus/enzymology , Base Sequence , Cytokinins/metabolism , DNA Primers , Glucuronidase/metabolism , Indoleacetic Acids/metabolism , Plant Leaves/metabolism , Raphanus/growth & development , Raphanus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL