Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mediators Inflamm ; 2022: 5985255, 2022.
Article in English | MEDLINE | ID: mdl-35586367

ABSTRACT

The dried root of Angelica sinensis (A. sinensis) has been widely used in Chinese traditional medicine for various diseases such as inflammation, osteoarthritis, infections, mild anemia, fatigue, and high blood pressure. Searching for the secondary metabolites of A. sinensis has been mainly conducted. However, the bioactivity of coumarins in the plant remains unexplored. Therefore, this study was designed to evaluate the anti-inflammatory activity of glabralactone, a coumarin compound from A. sinensis, using in vitro and in vivo models, and to elucidate the underlying molecular mechanisms of action. Glabralactone effectively inhibited nitric oxide production in lipopolysaccharide- (LPS-) stimulated RAW264.7 macrophage cells. The downregulation of LPS-induced mRNA and protein expression of iNOS, TNF-α, IL-1ß, and miR-155 was found by glabralactone. The activation of NF-κB and TRIF-dependent IRF-3 pathway was also effectively suppressed by glabralactone in LPS-stimulated macrophages. Glabralactone (5 and 10 mg/kg) exhibited an in vivo anti-inflammatory activity with the reduction of paw edema volume in carrageenan-induced rat model, and the expressions of iNOS and IL-1ß proteins were suppressed by glabralactone in the paw soft tissues of the animal model. Taken together, glabralactone exhibited an anti-inflammatory activity in in vitro and in vivo models. These findings reveal that glabralactone might be one of the potential components for the anti-inflammatory activity of A. sinensis and may be prioritized in the development of a chemotherapeutic agent for the treatment of inflammatory diseases.


Subject(s)
Adaptor Proteins, Vesicular Transport , Angelica sinensis , Coumarins , Interferon Regulatory Factor-3 , NF-kappa B , Adaptor Proteins, Vesicular Transport/antagonists & inhibitors , Adaptor Proteins, Vesicular Transport/metabolism , Angelica sinensis/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Coumarins/pharmacology , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Interferon Regulatory Factor-3/antagonists & inhibitors , Interferon Regulatory Factor-3/metabolism , Lipopolysaccharides/pharmacology , Mice , MicroRNAs/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Rats , Signal Transduction/drug effects
2.
Chin Med ; 11: 17, 2016.
Article in English | MEDLINE | ID: mdl-27069504

ABSTRACT

BACKGROUND: SHINBARO is a refined herbal formulation used to treat inflamed lesions and bone diseases. This study aimed to investigate the anti-osteoarthritic activities of intra-articular administration of SHINBARO and determine its underlying molecular mechanism in a monosodium iodoacetate (MIA)-induced osteoarthritis rat model. METHODS: Male Sprague-Dawley rats received a single intra-articular injection of MIA into the infrapatellar ligament of the right knee. Subsequently, the rats were treated with normal saline, SHINBARO, and diclofenac once daily for 21 days. Rats treated with normal saline, but not MIA, comprised the control group. Histological changes in the femur of the MIA-induced osteoarthritis rat model were observed by micro-computed tomography scanning and staining with hematoxylin and eosin, and safranin-O fast green. Serum levels of PGE2 and anti-type II collagen antibodies in the MIA-induced osteoarthritis rat model were measured using commercial kits. Protein levels of inflammatory enzymes (iNOS, COX-2), pro-inflammatory cytokines (TNF-α, IL-1ß), and inflammatory mediators (NF-κB, IκB) in cartilaginous tissues were determined by western blot analysis. RESULTS: Intra-articular administration of SHINBARO (IAS) at 20 mg/kg remarkably restrained the decrease in bone volume/total volume, being 28 % (P = 0.0001) higher than that in the vehicle-treated MIA group. IAS (2, 10, and 20 mg/kg) treatment significantly recovered the mean number of objects values with increased percentage changes of 13.5 % (P = 0.147), 27.5 % (P = 0.028), and 44.5 % (P = 0.031), respectively, compared with the vehicle-treated MIA group. The serum level of PGE2 in the IAS group at 20 mg/kg was markedly inhibited by 60.6 % (P = 0.0007) compared with the vehicle-treated MIA group, and the anti-collagen type II antibody level in the IAS group was reduced in a dose-dependent manner. IAS (20 mg/kg) effectively suppressed the induction of inflammation-mediated enzymes (iNOS and COX-2) and pro-inflammatory cytokines (TNF-α and IL-1ß). IAS treatment also downregulated the NF-κB level and increased the IκB-α level in the MIA- induced osteoarthritis rat model. CONCLUSION: SHINBARO inhibited PGE2 and anti-type II collagen antibody production and modulated the balance of inflammatory enzymes, mediators, and cytokines in the MIA-induced osteoarthritis rat model.

3.
Sci Rep ; 5: 10305, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25980672

ABSTRACT

Melanogenesis is the process of melanin synthesis through keratinocytes-melanocytes interaction, which is triggered by the damaging effect of ultraviolet-B (UVB) rays. It is known that melanogenesis influences diverse cellular responses, including cell survival and apoptosis, via complex mechanisms of feedback and crosstalk. Therefore, an attempt to suppress melanin production by modulating the melanogenesis pathway may induce perturbations in the apoptotic balance of the cells in response to UVB irradiation, which results in various skin diseases such as melasma, vitiligo, and skin cancer. To identify such appropriate target strategies for the reduction of UVB-induced melanin synthesis, we reconstructed the melanogenesis signaling network and developed a Boolean network model. Mathematical simulations of the melanogenesis network model revealed that the inhibition of beta-catenin in the melanocytes effectively reduce melanin production while having minimal influence on the apoptotic balance of the cells. Exposing cells to a beta-catenin inhibitor decreased pigmentation but did not significantly change the B-cell Chronic lymphocytic leukemia/lymphoma 2 expression, a potent regulator of apoptotic balance. Thus, our systems analysis suggests that the inhibition of beta-catenin may be the most appropriate target strategy for the reduction of UVB-induced skin pigmentation.


Subject(s)
Melanins/biosynthesis , Skin Pigmentation/physiology , Skin Pigmentation/radiation effects , Ultraviolet Rays , Cells, Cultured , Epididymis/cytology , Gene Expression Regulation , Gene Regulatory Networks , Humans , Male , Melanocytes/metabolism , Melanocytes/radiation effects , Models, Biological , Models, Theoretical , Reproducibility of Results , Signal Transduction , Systems Biology/methods
4.
J Nat Prod ; 77(4): 917-24, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24689881

ABSTRACT

The anti-inflammatory activity of handelin (1), a guaianolide dimer from Chrysanthemum boreale flowers, was evaluated in vivo, and the effects on mediators nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) and the nuclear factor-κB (NF-κB) and ERK/JNK signaling pathways were investigated in vitro. Compound 1 inhibited lipopolysaccharide (LPS)-induced production of NO and PGE2 in cultured mouse macrophage RAW 264.7 cells. The suppression of NO and PGE2 production by 1 was correlated with the downregulation of mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Compound 1 also suppressed the induction of pro-inflammatory cytokines TNF-α and IL-1ß in LPS-stimulated RAW 264.7 cells. To further clarify the transcriptional regulatory pathway in the expression of iNOS and COX-2 by 1, the role of NF-κB was determined in RAW 264.7 cells. Compound 1 inhibits the binding activity of NF-κB into the nuclear proteins. The transcriptional activity of NF-κB stimulated with LPS was also suppressed by 1, which coincided with the inhibition of IκB degradation. Compound 1 also suppressed the activation of mitogen-activated protein kinases, including ERK and JNK signaling. In addition, the LPS-stimulated upregulation of miRNA-155 expression was suppressed by 1. The oral administration of 1 inhibited acute inflammation in carrageenan-induced paw and 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ear edema models. The serum level of IL-1ß was also inhibited by 1 in a carrageenan-induced paw edema model. These findings suggest that the suppression of NF-κB activation and pro-inflammatory cytokine production may be a plausible mechanism of action for the anti-inflammatory activity of handelin.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chrysanthemum/chemistry , Cytokines/metabolism , I-kappa B Proteins/metabolism , NF-kappa B/drug effects , Terpenes/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Cyclooxygenase 2 , Dinoprostone/metabolism , Down-Regulation , Edema/chemically induced , Edema/drug therapy , I-kappa B Proteins/drug effects , Interleukin-1beta/drug effects , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , Mitogen-Activated Protein Kinases/metabolism , Models, Animal , Molecular Structure , NF-KappaB Inhibitor alpha , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/drug effects , Nitric Oxide Synthase Type II/metabolism , Phytotherapy , Signal Transduction/drug effects , Terpenes/chemistry , Tumor Necrosis Factor-alpha/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...