Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 474: 134751, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38820748

ABSTRACT

Chlorination on microplastic (MP) biofilms was comprehensively investigated with respect to disinfection efficiency, morphology, and core microbiome. The experiments were performed under various conditions: i) MP particles; polypropylene (PP) and polystyrene (PS), ii) MP biofilms; Escherichia coli for single-species and river water microorganisms for multiple-species, iii) different chlorine concentrations, and iv) different chlorine exposure periods. As a result, chlorination effectively inactivated the MP biofilm microorganisms. The disinfection efficiency increased with increasing the free chlorination concentration and exposure periods for both single- and multiple-species MP biofilms. The multiple-species MP biofilms were inactivated 1.3-6.0 times less than single-species MP biofilms. In addition, the PP-MP biofilms were more vulnerable to chlorination than the PS-MP biofilms. Morphology analysis verified that chlorination detached most MP biofilms, while a small part still remained. Interestingly, chlorination strongly changed the biofilm microbiome on MPs; the relative abundance of some microbes increased after the chlorination, suggesting they could be regarded as chlorine-resistant bacteria. Some potential pathogens were also remained on the MP particles after the chlorination. Notably, chlorination was effective in inactivating the MP biofilms. Further research should be performed to evaluate the impacts of residual MP biofilms on the environment.


Subject(s)
Biofilms , Chlorine , Disinfection , Escherichia coli , Halogenation , Microplastics , Biofilms/drug effects , Disinfection/methods , Chlorine/pharmacology , Chlorine/chemistry , Escherichia coli/drug effects , Microplastics/toxicity , Water Microbiology , Disinfectants/pharmacology , Polypropylenes/chemistry , Polystyrenes/chemistry , Water Purification/methods
2.
Sci Total Environ ; 849: 157781, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35926609

ABSTRACT

Microplastics (MPs) provide habitats to microorganisms in aquatic environments; distinct microbial niches have recently been elucidated. However, there is little known about the microbial communities on MPs under urban riverine conditions, in which environmental factors fluctuate. Therefore, this study investigated MP biofilm communities under various urban riverine conditions (i.e., organic content, salinity, and dissolved oxygen (DO) concentration) and evaluated the prioritized factors affecting plastisphere communities. Nine biofilm-forming reactors were operated under various environmental conditions. Under all testing conditions, biofilms grew on MPs with decreasing bacterial diversity. Interestingly, biofilm morphology and bacterial populations were driven by the environmental parameters. We found that plastisphere community structures were grouped according to the environmental conditions; organic content in the water was the most significant factor determining MP biofilm communities, followed by salinity and DO concentration. The principal plastisphere communities were Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes phyla. In-depth analyses of plastisphere communities revealed that biofilm-forming and plastic-degrading bacteria were the predominant microbes. In addition, potential pathogens were majorly discovered in the riverine waters with high organic content. Our results suggest that distinct plastisphere communities coexist with MP particles under certain riverine water conditions, implying that the varied MP biofilm communities may affect urban riverine ecology in a variety of ways.


Subject(s)
Microbiota , Microplastics , Bacteria , Biofilms , Oxygen , Plastics/analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...