Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(18): 8515-8523, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37669534

ABSTRACT

Lithium (Li) metal is a promising anode material for high-energy-density Li batteries due to its high specific capacity. However, the uneven deposition of Li metal causes significant volume expansion and safety concerns. Here, we investigate the impact of a gradient-infused Li-metal anode using silver (Ag)-decorated carbonized cellulose fibers (Ag@CC) as a three-dimensional (3D) current collector. The loading level of the gradient-infused Li-metal anode is controlled by the thermal infusion time of molten Li. In particular, a 5 s infusion time in the Ag@CC current collector creates an appropriate space with a lithiophilic surface, resulting in improved cycling stability and a reduced volume expansion rate. Moreover, integrating a 5 s Ag@CC anode with a high-capacity cathode demonstrates superior electrochemical performance with minimal volume expansion. This suggests that a gradient-infused Li-metal anode using Ag@CC as a 3D current collector represents a novel design strategy for Li-metal-based high-capacity Li-ion batteries.

2.
Nanotechnology ; 33(11)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34875642

ABSTRACT

We study the rutile-TiO2film deposition with a high-kvalue using a SnO2seed layer and a low temperature heat treatment. Generally, heat treatment over 600 °C is required to obtain the rutile-TiO2film. However, By using a SnO2seed layer, we obtained rutile-TiO2films with heat treatments as low as 400 °C. The XPS analysis confirms that the SnO2and TiO2film were deposited. The XRD analysis showed that a heat treatment at 400 °C after depositing the SnO2and TiO2films was effective in obtaining the rutile-TiO2film when the SnO2film was thicker than 10 nm. The TEM/EDX analysis show that no diffusion in the thin film between TiO2and SnO2. The dielectric constant of the TiO2film deposited on the SnO2film (20 nm) was 67, which was more than twice as high as anatase TiO2dielectric constant (Anatase TiO2dielectric constant : 15-40). The current density was 10-4A cm-2at 0.7 V and this value confirmed that the leakage current was not affected by the SnO2seed layer.

3.
J Nanosci Nanotechnol ; 21(10): 5157-5164, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33875101

ABSTRACT

Silicon oxycarbide (SiOC) film was etched using a CF4/C6F12O/O2 mixed gas plasma through an inductively coupled plasma etcher. Changes in the dielectric constant and surface chemical bonding properties were investigated using ellipsometry and Fourier transform infrared spectroscopy. Plasma diagnosis was carried out using a double Langmuir probe, ultraviolet detector, and residual gas analyzer. The physical and chemical plasma properties of CHF3 and C6F12O exhibited similar trends. However, the C6F12O mixed plasma exhibited a smaller change in dielectric constant compared to that of a conventional CHF3 mixed plasma, because of the lower ion density, ion energy flux, and UV intensity and thinner fluorocarbon-based polymer formation. Therefore, the liquefied C6F12O gas can substitute for the existing etching process gas and reduce the change in dielectric constant.


Subject(s)
Surface Properties , Spectroscopy, Fourier Transform Infrared
4.
Nanotechnology ; 31(35): 355702, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32403092

ABSTRACT

Tin disulfide (SnS2) has emerged as a promising two-dimensional (2D) material due to its excellent electrical and optical properties. However, research into 2D SnS2 has mainly focused on its synthesis procedures and applications; its stability to humidity and temperature has yet to be studied. In this work, 2D SnS2 thin films were grown by atomic layer deposition (ALD) and characterized by various tools, such as x-ray diffraction, Raman analysis, and transmission electron spectroscopy. Characterization reveals that ALD-grown SnS2 thin films are a high-quality 2D material. After characterization, a four-inch-wafer-scale uniformity test was performed by Raman analysis. Owing to the quality, large-area growth enabled by the ALD process, 98.72% uniformity was obtained. Finally, we calculated the thermodynamic equations for possible reactions between SnS2 and H2O to theoretically presurmise the oxidation of SnS2 during accelerated humidity and temperature testing. After the accelerated humidity and temperature test, x-ray diffraction, Raman analysis, and Auger electron spectroscopy were performed to check whether SnS2 was oxidized or not. Our data revealed that 2D SnS2 thin films were stable at humid conditions.

5.
Nanotechnology ; 31(26): 265604, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32176869

ABSTRACT

Despite increasing interest in tin disulfide (SnS2) as a two-dimensional (2D) material due to its promising electrical and optical properties, the surface treatment of silicon dioxide (SiO2) substrates prior to the atomic layer deposition (ALD) deposition of SnS2 has not been thoroughly studied. In this paper, we prepared two types of SiO2 substrates with and without using an O2 plasma surface treatment and compared the ALD growth behavior of SnS2 on the SiO2 substrates. The hydrophilic properties of the two SiO2 substrates were investigated by x-ray photoelectron spectroscopy and contact angle measurements, which showed that using an O2 plasma surface treatment tuned the surface to be more hydrophilic. ALD-grown SnS2 thin films on the two different SiO2 substrates were characterized by x-ray diffraction, Raman spectroscopy, atomic force microscopy, and x-ray photoelectron spectroscopy. To estimate the exact thickness of the ALD-grown SnS2 thin films, transmission electron microscopy was used. Our data revealed that using O2 plasma surface treatment increased the growth rate of the initial ALD stage. Thus, the ALD-grown SnS2 thin film on the SiO2 substrate treated with O2 plasma was thicker than the film grown on the non-treated SiO2 substrate.

6.
Nanotechnology ; 30(40): 405707, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31247597

ABSTRACT

In this work, we report on the layered deposition of few-layer tin disulfide (SnS2) using atomic layer deposition (ALD). By varying the ALD cycles it was possible to deposit poly-crystalline SnS2 with small variation in layer numbers. Based on the ALD technique, we developed the process technology growing few-layer crystalline SnS2 film (3-6 layers) and we investigated their electrical properties by fabricating bottom-gated thin film transistors using the ALD SnS2 as the transport channel. SnS2 devices showed typical n-type characteristic with on/off current ratio of ∼8.32 × 106, threshold voltage of ∼2 V, and a subthreshold swing value of 830 mV decade-1 for the 6 layers SnS2. The developed SnS2 ALD technique may aid the realization of two-dimensional SnS2 based flexible and wearable devices.

7.
Lab Anim Res ; 27(3): 259-63, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21998617

ABSTRACT

Recently, loss of endogenous glutathione during N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxic injury, and the resultant overproduction of reactive oxygen species (ROS) through an arachidonic acid cascade process in brain, have been implicated in neuronal damage in various neurodegenerative diseases. Glutathione depletion induced by L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, is known to cause arachidonic acid-mediated excitotoxicity in primary mixed cortical cultures. The aim of this study was to investigate whether esculetin (6,7-dihydroxycoumarin), an inhibitor of lipoxygenase, protects against neurotoxicity induced by NMDA or BSO. We observed that neurotoxicity induced by NMDA but not kainic acid was attenuated by esculetin. At the same concentration (100 µM), esculetin attenuated the (45)Ca(2+) uptake elevation induced by NMDA. Free radical-mediated neuronal injury induced by H(2)O(2) and xanthine/xanthine oxidase was concentration-dependently blocked by esculetin. Esculetin (1-30 µM) dose-dependently inhibited BSO-induced neuronal injury. In addition, arachidonate-induced neurotoxicity was completely blocked by esculetin. BSO also reduced glutathione peroxidase (GPx) activity, but did not change glutathione reductase (GR) activity 24 h after treatment. Esculetin dose-dependently increased GR activity, but did not alter GPx activity. These findings suggest that esculetin can contribute to the rescue of neuronal cells from NMDA neurotoxicity and that this protective effect occurs partly through NMDA receptor modulation and the sparing of glutathione depletion.

8.
Biol Pharm Bull ; 27(5): 723-6, 2004 May.
Article in English | MEDLINE | ID: mdl-15133254

ABSTRACT

Oxidative stress caused by an elevation in reactive oxygen species (ROS) plays an important role in Alzheimer's disease and other neurodegenerative diseases. In this study, we examined the neuroprotective effect of danthron (1,8-dihydroxyanthraquinone) against neurotoxicities induced by beta-amyloid (25-35), excitotoxins, apoptosis, and oxidative stress in primary cortical cultures. Danthron dose-dependently reduced neuronal injury induced by 30 microM beta-amyloid (25-35). Danthron significantly inhibited oxidative injury induced by 100 microM Fe(3+) and decreased membrane lipid peroxidation induced by 100 microM Fe(3+) as measured by thiobarbituric-acid-reactive substance (TBARS). Danthron (0.5-50 microM) ameliorated the effects of buthionine sulfoximine (BSO, 1 mM), which depletes endogenous glutathione by 10-73%. Danthron also dose-dependently inhibited neuronal injury mediated by nitric oxide (NO) radicals, but failed to inhibit injury due to superoxide radicals (O(2-)). These results suggest danthron treatment may, in part, reduce neurotoxicity related to beta-amyloid protein by both dominant inhibitory effects on membrane lipid peroxidation and glutathione deprivation.


Subject(s)
Amyloid beta-Peptides/toxicity , Anthraquinones/pharmacology , Cerebral Cortex/drug effects , Oxidative Stress/drug effects , Peptide Fragments/toxicity , Amyloid beta-Peptides/antagonists & inhibitors , Animals , Cells, Cultured , Cerebral Cortex/metabolism , Dose-Response Relationship, Drug , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Mice , Mice, Inbred ICR , Oxidative Stress/physiology , Peptide Fragments/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...