Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Res ; 38(7): 1199-1207, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34145532

ABSTRACT

PURPOSE: Epicutaneous immunotherapy (EPIT) is being studied as a method for treating allergic rhinitis because of skin immunology, user convenience and enhanced patient compliance. However, the use of EPIT is limited because of the very low skin permeability of the allergen. In this study, the limitations of EPIT were overcome by using sophisticated delivery with microneedles. The immunological efficacy of this method was studied in a murine model of house dust mite (HDM) allergic rhinitis. METHODS: The length of the microneedles was 400 µm, and the coating formulation containing HDM was locally distributed near the end of the microneedle tips. The change of distribution of FITC-dextran in porcine skin in vitro was observed over time using a confocal microscope. The effect of immunotherapy in the allergic rhinitis model, sensitized by HDM-coated microneedles (HDM MNs), was observed according to the amount of HDM applied. RESULTS: The microneedles delivered the coating formulation with precision into the porcine skin layer, and the coated formulation on the microneedles was all dissolved in the porcine skin in vitro within 20 min of administration and then gradually diffused into the skin layer. When HDM MNs were administered to mice, a 0.1-µg dose of HDM provided the most effective immunization, and improved efficacy was shown between 0.1- and 0.5- µg doses of HDM. CONCLUSIONS: Effective immunotherapy can be achieved by precision delivery of the allergen into the skin layer, and microneedles can provide effective immunological therapy by delivering the appropriate amount of allergen.


Subject(s)
Allergens/administration & dosage , Desensitization, Immunologic/methods , Rhinitis, Allergic/therapy , Allergens/adverse effects , Animals , Disease Models, Animal , Dose-Response Relationship, Immunologic , Female , Humans , Injections, Intradermal/methods , Mice , Microinjections/methods , Pyroglyphidae/immunology , Rhinitis, Allergic/immunology , Swine
2.
Drug Deliv Transl Res ; 11(4): 1390-1400, 2021 08.
Article in English | MEDLINE | ID: mdl-33759112

ABSTRACT

The oral mucosa is an effective site for vaccination. However, for oral mucosal vaccines, delivery of the right dose of vaccine is not possible due to the water-rich environment. In this study, the buccal mucosa, which is easy to access using a microneedle array in the oral cavity, was selected as the administration site. The immune responses to the use of microneedles to conventional transmucosal delivery were compared. In addition, the adjuvant effect of the addition of cholera toxin (CT) to the drug formulation was observed. Two kinds of patches were prepared: (1) Ovalbumin (OVA) was dip coated only on the tips of microneedles (C-OVA-MN) and (2) OVA was coated on the surface of a flat disk patch substrate without microneedles (C-OVA-D). The drug delivery properties of C-OVA-MN and C-OVA-D were investigated using fluorescent-labeled OVA (OVA/FITC). Each patch was administered to mice twice, 2 weeks apart, and then antibody titers were measured. A microneedle patch can deliver vaccine into the epithelium of the buccal mucosa in a short period of time compared to transmucosal delivery. A microneedle system of C-OVA-MN showed a high serum IgG titer. In addition, CT triggered CD8+ and CD4+ T cell-mediated immune responses. Through this study, we present the possibility of a new method of vaccination to the buccal mucosa using microneedles and CT adjuvant. Illustration of delivery of vaccine to the oral mucosal epithelium using a microneedle patch: Ovalbumin (OVA)-coated microneedle (C-OVA-MN) consists of tip, step, and coating formulation. Microneedle patch coated with OVA formulation is targeting buccal mucosa, which is easy to access in the oral cavity. OVA is delivered to the buccal epithelium precisely using a microneedle patch, and OVA is delivered by transmucosal route using a disk patch.


Subject(s)
Cholera Toxin , Immunization , Animals , Immunization/methods , Mice , Mucus , Needles , Ovalbumin , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...