ABSTRACT
ABSTRACT Although β-hydroxyisovalerylshikonin is suggested as a potential therapeutic agent for preventing various cancers, the underlying molecular mechanisms are not completely understood. In the present study, we investigated whether β-hydroxyisovalerylshikonin enhances apoptosis by triggering reactive oxygen species production in colon cancer HCT116 cells. β-Hydroxyisovalerylshikonin significantly inhibited the viability of HCT116 cells with maximum inhibition at 4 µM. Furthermore, treatment with β-hydroxyisovalerylshikonin subsequently increased sub-G1 cells and annexin-V+ cell population. Additionally, pretreatment with the caspase-8 inhibitor, z-IETD-fmk, and the caspase-9 inhibitor, z-LETD-fmk, significantly decreased β-hydroxyisovalerylshikonin-induced apoptosis, suggesting that β-hydroxyisovalerylshikonin promotes apoptosis through both the intrinsic and the extrinsic apoptotic pathways by activating caspase-8 and caspase-9. We also found that mitochondria played an important role in β-hydroxyisovalerylshikonin-mediated apoptosis via the intrinsic pathway. Accordingly, β-hydroxyisovalerylshikonin-induced reactive oxygen species production was evident after treatment with β-hydroxyisovalerylshikonin, and pretreatment with reactive oxygen species inhibitors, N-acetyl-L-cysteine and glutathione, significantly decreased β-hydroxyisovalerylshikonin-induced reactive oxygen species production, resulting in inhibition of apoptosis, which suggests that ROS generation is required for β-hydroxyisovalerylshikonin-mediated apoptosis. Taken together, these results demonstrated that the apoptotic effect of β-hydroxyisovalerylshikonin is enhanced in colon cancer HCT116 cells via reactive oxygen species generation and triggering of the caspase pathways, indicating that β-hydroxyisovalerylshikonin has potential as a therapeutic in the treatment of colon cancers.
ABSTRACT
Mori folium, the leaf of Morus alba L. (Moraceae), has been traditionally used for various medicinal purposes from ancient times to the present. In this study, we examined the effects of water extract of Mori folium (WEMF) on the production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. Our data indicated that WEMF significantly suppressed the secretion of NO and PGE2 in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects were accompanied by a marked reduction in their regulatory gene expression at the transcription level. WEMF attenuated LPS-induced intracellular ROS production in RAW 264.7 macrophages. It inhibited the nuclear translocation of the nuclear factor-kappa B p65 subunit and the activation of mitogen-activated protein kinases in LPS-treated RAW 264.7 macrophages. Furthermore, WEMF reduced LPS-induced NO production and ROS accumulation in zebrafish. Although more efforts are needed to fully understand the critical role of WEMF in the inhibition of inflammation, the findings of the present study may provide insights into the approaches for Mori folium as a potential therapeutic agent for inflammatory and antioxidant disorders.
Subject(s)
Inflammation Mediators/metabolism , Macrophages/drug effects , Morus/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species/antagonists & inhibitors , Zebrafish , Animals , Gene Expression , Genes, Regulator , Inflammation Mediators/antagonists & inhibitors , Lipopolysaccharides , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , Prostaglandins E/metabolism , RAW 264.7 Cells , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
Abstract Moutan Cortex Radicis, the root bark of Paeonia × suffruticosa Andrews, Paeoniaceae, has been widely used in traditional medicine therapy. Although it has been shown to possess many pharmacological activities, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated. In the present study, we investigated the pro-apoptotic effects of the ethanol extract of Moutan Cortex Radicis in human gastric cancer AGS cells. Moutan Cortex Radicis treatment inhibited the cell viability of AGS cells in a concentration-dependent manner, which was associated with apoptotic cell death. Moutan Cortex Radicis's induction of apoptosis was connected with the upregulation of death receptor 4, death receptor 5, tumor necrosis factor-related apoptosis-inducing ligand, Fas ligand, and Bax, and the downregulation of Bcl-2 and Bid. Moutan Cortex Radicis treatment also induced the loss of mitochondrial membrane potential (Δψm), the proteolytic activation of caspases (-3, -8, and -9), and the degradation of poly(ADP-ribose) polymerase, an activated caspase-3 substrate protein. However, the pre-treatment of a caspase-3 inhibitor significantly attenuated Moutan Cortex Radicis-induced apoptosis and cell viability reduction. In addition, Moutan Cortex Radicis treatment effectively activated the adenosine monophosphate-activated protein kinase signaling pathway; however, a specific inhibitor of AMPK significantly reduced Moutan Cortex Radicis-induced apoptosis. Overall, the results suggest that the apoptotic activity of Moutan Cortex Radicis may be associated with a caspase-dependent cascade through the activation of both extrinsic and intrinsic signaling pathways connected with adenosine monophosphate-activated protein kinase activation, and Moutan Cortex Radicis as an activator of adenosine monophosphate-activated protein kinase could be a prospective application to treat human cancers.
ABSTRACT
ABSTRACT Mori folium, the leaf of Morus alba L. (Moraceae), has been traditionally used for various medicinal purposes from ancient times to the present. In this study, we examined the effects of water extract of Mori folium (WEMF) on the production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. Our data indicated that WEMF significantly suppressed the secretion of NO and PGE2 in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects were accompanied by a marked reduction in their regulatory gene expression at the transcription level. WEMF attenuated LPS-induced intracellular ROS production in RAW 264.7 macrophages. It inhibited the nuclear translocation of the nuclear factor-kappa B p65 subunit and the activation of mitogen-activated protein kinases in LPS-treated RAW 264.7 macrophages. Furthermore, WEMF reduced LPS-induced NO production and ROS accumulation in zebrafish. Although more efforts are needed to fully understand the critical role of WEMF in the inhibition of inflammation, the findings of the present study may provide insights into the approaches for Mori folium as a potential therapeutic agent for inflammatory and antioxidant disorders.
Subject(s)
Animals , Rats , Zebrafish , Plant Extracts/pharmacology , Reactive Oxygen Species/antagonists & inhibitors , Inflammation Mediators/metabolism , Morus/chemistry , Macrophages/drug effects , Prostaglandins E/metabolism , Gene Expression , Genes, Regulator , Lipopolysaccharides , Inflammation Mediators/antagonists & inhibitors , RAW 264.7 Cells , Macrophages/metabolism , Nitric Oxide/metabolismABSTRACT
ABSTRACT The fruit of the Prunus mume (Siebold) Siebold & Zucc., Rosaceae (Korean name: Maesil) has long been used as a health food or valuable medicinal material in traditional herb medicine in Southeast Asian countries. In this study, we determined the potential therapeutic efficacy of the ethanol extract of P. mume fruits (EEPM) against H2O2-induced oxidative stress and apoptosis in the murine skeletal muscle myoblast cell line C2C12, and sought to understand the associated molecular mechanisms. The results indicated that exposure of C2C12 cells to H2O2 caused a reduction in cell viability by increasing the generation of intracellular reactive oxygen species and by disrupting mitochondrial membrane permeability, leading to DNA damage and apoptosis. However, pretreatment of the cells with EEPM before H2O2 exposure effectively attenuated these changes, suggesting that EEPM prevented H2O2-induced mitochondria-dependent apoptosis. Furthermore, the increased ex-pression and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) and up-regulation of heme oxygenase-1 (HO-1), a phase II antioxidant enzyme, were detected in EEPM-treated C2C12 cells. We also found that zinc protoporphyrin IX, an HO-1 inhibitor, attenuated the protective effects of EEPM against H2O2-induced reactive oxygen species accumulation and cytotoxicity. Therefore, these results indicate that the activation of the Nrf2/HO-1 pathway might be involved in the protection of EEPM against H2O2-induced cellular oxidative damage. In conclusion, these results show that EEPM contributes to the prevention of oxidative damage and could be used as a nutritional agent for oxidative stress-related diseases.
ABSTRACT
AbstractFucoidan, a sulfated polysaccharide found in marine algae and brown seaweeds, has been shown to inhibit the in vitro growth of human cancer cells. This study was conducted in cultured human bladder cancer EJ cells to elucidate the possible mechanisms by which fucoidan exerts its anti-proliferative activity, which until now has remained poorly understood. Fucoidan treatment of EJ cells resulted in dose-dependent inhibition of cell growth and induced apoptotic cell death. Flow cytometric analysis revealed that fucoidan led to G1 arrest in cell cycle progression. It was associated with down-regulation of cyclin D1, cyclin E, and cyclin-dependent-kinases (Cdks) in a concentration-dependent manner, without any change in Cdk inhibitors, such as p21 and p27. Furthermore, dephosphorylation of retinoblastoma protein (pRB) by this compound was associated with enhanced binding of pRB with the transcription factors E2F-1 and E2F-4. Overall, our results demonstrate that fucoidan possesses anticancer activity potential against bladder cancer cells by inhibiting pRB phosphorylation.