Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Biochem Biophys Res Commun ; 607: 146-151, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35367827

ABSTRACT

Bacillus subtilis is a gram-positive bacterium that has developed to coordinate gene expression and to survive against changes of nutrients and toxic chemicals. Flavonoids are exuded by plant cells and are abundant in the soil. To counteract the antibacterial effects of flavonoids, B. subtilis expresses flavonoid-detoxifying enzymes, and their expression is negatively regulated by transcription factors, including YetL. YetL was shown to control B. subtilis growth through the promoter regions of yetL and yetM genes in response to some flavonoids. Despite the functional significance of the YetL transcription factor in bacterial survival, no structural information is available for YetL. Here, we report the crystal structure of YetL and propose a flavonoid-induced regulatory mechanism. The YetL structure contains the canonical winged helix-turn-helix motif of the MarR superfamily but distinctly presents an additional N-terminal helix. In the dimeric assembly of YetL, the H1 helix intersects the YetL dimer and contributes to extensive intersubunit interactions. As a transcription factor, YetL recognizes a 28-mer operator of double-stranded DNA that contains a palindromic sequence. Moreover, our comparative structural analysis of YetL and other MarR members allows us to propose a flavonoid-induced transcription regulatory mechanism that is used for bacterial adaptation to environmental changes and stresses.


Subject(s)
Bacillus subtilis , Transcription Factors , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Binding Sites , Flavonoids/metabolism , Gene Expression Regulation, Bacterial , Transcription Factors/metabolism
3.
Biochem Biophys Res Commun ; 600: 142-149, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35219103

ABSTRACT

Listeria monocytogenes is a psychrotrophic food-borne pathogenic bacterium that causes listeriosis. Due to its unusual adaptation, an ability to grow at extended temperatures ranging from 4 to 45 °C, L. monocytogenes is notoriously hard to control in food-manufacturing processes. In addition, the growing number of antibiotic-resistant L. monocytogenes strains have made listeriosis steadily refractory to clinical treatments and can lead to serious life-threatening diseases, such as sepsis and meningitis, in immunocompromised persons and neonates. Transcription factors that belong to the PadR family play a key role in bacterial survival against unfavorable environmental stresses. The LltR protein from L. monocytogenes was identified as a PadR-type transcription factor and was shown to be required for bacterial growth adaptation at low temperatures. Despite the functional significance of LltR in listeria survival and pathogenesis, our molecular understanding of the LltR-mediated transcriptional regulation is highly limited. Here, we report the crystal structure of LltR and reveal the operator DNA recognition mechanism used by LltR. LltR dimerizes into an isosceles triangle-like shape and requires a winged helix-turn-helix motif for dsDNA recognition. Indeed, LltR and putative operator dsDNA binding was observed and suggests a transcriptional repression of the llfR-lmo0600-lmo0601 operon by direct interaction between the LltR transcription factor and its promoter region. Structure-based comparative and mutational analyses showed that LltR interacts with dsDNA via a unique strategy that combines both LltR-specific and PadR family-common mechanisms.


Subject(s)
Listeria monocytogenes , Listeriosis , Bacterial Proteins/metabolism , Humans , Infant, Newborn , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Listeriosis/microbiology , Operon , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...