Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Exp Clin Cancer Res ; 41(1): 273, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36096808

ABSTRACT

BACKGROUND: Lamins, key nuclear lamina components, have been proposed as candidate risk biomarkers in different types of cancer but their accuracy is still debated. AKTIP is a telomeric protein with the property of being enriched at the nuclear lamina. AKTIP has similarity with the tumor susceptibility gene TSG101. AKTIP deficiency generates genome instability and, in p53-/- mice, the reduction of the mouse counterpart of AKTIP induces the exacerbation of lymphomas. Here, we asked whether the distribution of AKTIP is altered in cancer cells and whether this is associated with alterations of lamins. METHODS: We performed super-resolution imaging, quantification of lamin expression and nuclear morphology on HeLa, MCF7, and A549 tumor cells, and on non-transformed fibroblasts from healthy donor and HGPS (LMNA c.1824C > T p.Gly608Gly) and EDMD2 (LMNA c.775 T > G) patients. As proof of principle model combining a defined lamin alteration with a tumor cell setting, we produced HeLa cells exogenously expressing the HGPS lamin mutant progerin that alters nuclear morphology. RESULTS: In HeLa cells, AKTIP locates at less than 0.5 µm from the nuclear rim and co-localizes with lamin A/C. As compared to HeLa, there is a reduced co-localization of AKTIP with lamin A/C in both MCF7 and A549. Additionally, MCF7 display lower amounts of AKTIP at the rim. The analyses in non-transformed fibroblasts show that AKTIP mislocalizes in HGPS cells but not in EDMD2. The integrated analysis of lamin expression, nuclear morphology, and AKTIP topology shows that positioning of AKTIP is influenced not only by lamin expression, but also by nuclear morphology. This conclusion is validated by progerin-expressing HeLa cells in which nuclei are morphologically altered and AKTIP is mislocalized. CONCLUSIONS: Our data show that the combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP. The results also point to the fact that lamin alterations per se are not predictive of AKTIP mislocalization, in both non-transformed and tumor cells. In more general terms, this study supports the thesis that a combined analytical approach should be preferred to predict lamin-associated changes in tumor cells. This paves the way of next translational evaluation to validate the use of this combined analytical approach as risk biomarker.


Subject(s)
Lamin Type A , Progeria , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/metabolism , Fibroblasts/metabolism , HeLa Cells , Humans , Lamin Type A/genetics , Lamin Type A/metabolism , Mice , Progeria/genetics , Progeria/metabolism , Progeria/pathology , Telomere/metabolism
2.
Nat Commun ; 12(1): 4722, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354059

ABSTRACT

Mutations in the LaminA gene are a common cause of monogenic dilated cardiomyopathy. Here we show that mice with a cardiomyocyte-specific Lmna deletion develop cardiac failure and die within 3-4 weeks after inducing the mutation. When the same Lmna mutations are induced in mice genetically deficient in the LINC complex protein SUN1, life is extended to more than one year. Disruption of SUN1's function is also accomplished by transducing and expressing a dominant-negative SUN1 miniprotein in Lmna deficient cardiomyocytes, using the cardiotrophic Adeno Associated Viral Vector 9. The SUN1 miniprotein disrupts binding between the endogenous LINC complex SUN and KASH domains, displacing the cardiomyocyte KASH complexes from the nuclear periphery, resulting in at least a fivefold extension in lifespan. Cardiomyocyte-specific expression of the SUN1 miniprotein prevents cardiomyopathy progression, potentially avoiding the necessity of developing a specific therapeutic tailored to treating each different LMNA cardiomyopathy-inducing mutation of which there are more than 450.


Subject(s)
Cardiomyopathy, Dilated/genetics , Lamin Type A/genetics , Lamin Type A/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Animals , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Dependovirus/genetics , Female , Humans , Lamin Type A/deficiency , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Transduction, Genetic
3.
PLoS Genet ; 17(8): e1009757, 2021 08.
Article in English | MEDLINE | ID: mdl-34449766

ABSTRACT

To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Mitosis/physiology , Adaptor Proteins, Signal Transducing/physiology , Apoptosis Regulatory Proteins/physiology , Cell Cycle Proteins/metabolism , Cytokinesis , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , HeLa Cells , Humans , Protein Transport , Spindle Apparatus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Aging Cell ; 19(3): e13108, 2020 03.
Article in English | MEDLINE | ID: mdl-32087607

ABSTRACT

Hutchinson-Gilford progeria is a premature aging syndrome caused by a truncated form of lamin A called progerin. Progerin expression results in a variety of cellular defects including heterochromatin loss, DNA damage, impaired proliferation and premature senescence. It remains unclear how these different progerin-induced phenotypes are temporally and mechanistically linked. To address these questions, we use a doxycycline-inducible system to restrict progerin expression to different stages of the cell cycle. We find that progerin expression leads to rapid and widespread loss of heterochromatin in G1-arrested cells, without causing DNA damage. In contrast, progerin triggers DNA damage exclusively during late stages of DNA replication, when heterochromatin is normally replicated, and preferentially in cells that have lost heterochromatin. Importantly, removal of progerin from G1-arrested cells restores heterochromatin levels and results in no permanent proliferative impediment. Taken together, these results delineate the chain of events that starts with progerin expression and ultimately results in premature senescence. Moreover, they provide a proof of principle that removal of progerin from quiescent cells restores heterochromatin levels and their proliferative capacity to normal levels.


Subject(s)
DNA Damage/genetics , Heterochromatin/metabolism , Lamin Type A/metabolism , Progeria/metabolism , Signal Transduction/genetics , Aging, Premature/genetics , Aging, Premature/metabolism , Cell Proliferation/genetics , Cells, Cultured , Cellular Senescence/genetics , DNA Damage/drug effects , DNA Replication/genetics , Doxorubicin/pharmacology , Fibroblasts/metabolism , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression , Humans , Lamin Type A/genetics , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Progeria/genetics
5.
Curr Protoc Cell Biol ; 84(1): e96, 2019 09.
Article in English | MEDLINE | ID: mdl-31483108

ABSTRACT

Protein-protein interactions (PPIs) add an essential layer of complexity to the information encoded by the genome. Modulation of such interactions is a key feature of most, if not all, cellular activities and allows cells to respond rapidly to both internal and external signals and stimuli. In this respect, the development of the BioID assay to interrogate PPIs within a cellular context represents an important adjunct to the range of tools currently at researchers' disposal. To address some of its current limitations, we devised 2C-BioID, in which biotin ligase and the protein of interest remain as separate entities until induced to associate. This is accomplished using the well-established FKBP-FRB dimerization system (based on the rapamycin-induced binding of FK506 binding protein and FKBP12-rapamycin binding domain.). The design of 2C-BioID ensures that biotin ligase association with the protein of interest occurs only after addition of the rapamycin analogue AP21967. As such, 2C-BioID alleviates potential targeting issues and improves the ability to exclude false positives, thereby refining the specificity of BioID-generated interactomes. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Dimerization , Protein Binding , Protein Interaction Mapping/methods , Tacrolimus Binding Protein 1A/metabolism , Biotinylation , Carbon-Nitrogen Ligases/metabolism , Escherichia coli Proteins/metabolism , Genome , Humans , Repressor Proteins/metabolism , Sirolimus/analogs & derivatives , Sirolimus/metabolism , Tacrolimus Binding Protein 1A/genetics
6.
iScience ; 10: 40-52, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30500481

ABSTRACT

The modulation of protein-protein interactions (PPIs) is an essential regulatory activity defining diverse cell functions in development and disease. BioID is an unbiased proximity-dependent biotinylation method making use of a biotin-protein ligase fused to a protein of interest and has become an important tool for mapping of PPIs within cellular contexts. We devised an advanced method, 2C-BioID, in which the biotin-protein ligase is kept separate from the protein of interest, until the two are induced to associate by the addition of a dimerizing agent. As proof of principle, we compared the interactomes of lamina-associated polypeptide 2ß (LAP2ß) with those of lamins A and C, using 2C- and conventional BioID. 2C-BioID greatly enhanced data robustness by facilitating the in silico elimination of non-specific interactors as well as overcoming the problems associated with aberrant protein localization. 2C-BioID therefore significantly strengthens the specificity and reliability of BioID-based interactome analysis, by the more stringent exclusion of false-positives and more efficient intracellular targeting.

7.
Sci Rep ; 7(1): 15678, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29142250

ABSTRACT

Skin ageing is an inevitable consequence of life and accelerated by exposure to ultraviolet (UV) rays. Senescence is an irreversible growth arrest and senescent cells accumulate in ageing tissues, at sites of age-related pathologies and in pre-neoplastic lesions. Conventionally, senescent cells have been detected by senescence associated-ß-galactosidase (SA-ß-gal) staining, a procedure that requires enzymatic activity, which is lost in fixed tissue samples. We previously demonstrated that loss of lamin B1 is a novel marker to identify senescent cells. Here, we demonstrate that loss of lamin B1 facilitates the detection and quantification of senescent cells upon UV-exposure in vitro and upon chronic UV-exposure and skin regeneration in vivo. Taken together, this marker enables the study of environmental conditions on tissue ageing and regeneration in vivo, serves as a diagnostic tool to distinguish senescent from proliferating cells in pre-neoplastic lesions, and facilitates investigating the role of senescent cells in various age-related pathologies.


Subject(s)
Cellular Senescence/genetics , Lamin Type B/genetics , Skin Aging/genetics , beta-Galactosidase/genetics , Biomarkers/metabolism , Cell Proliferation/genetics , Cell Proliferation/radiation effects , Humans , Keratinocytes/metabolism , Keratinocytes/radiation effects , Primary Cell Culture , Regeneration/genetics , Skin/metabolism , Skin/pathology , Skin Aging/pathology , Ultraviolet Rays/adverse effects
8.
Curr Biol ; 26(19): 2651-2658, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27641764

ABSTRACT

The nuclear lamina is a universal feature of metazoan nuclear envelopes (NEs) [1]. In mammalian cells, it appears as a 10-30 nm filamentous layer at the nuclear face of the inner nuclear membrane (INM) and is composed primarily of A- and B-type lamins, members of the intermediate filament family [2]. While providing structural integrity to the NE, the lamina also represents an important signaling and regulatory platform [3]. Two A-type lamin isoforms, lamins A and C (LaA and LaC), are expressed in most adult human cells. Encoded by a single gene, these proteins are largely identical, diverging only in their C-terminal tail domains. By contrast with that of LaC, the unique LaA tail undergoes extensive processing, including farnesylation and endo-proteolysis [4, 5]. However, functional differences between LaA and LaC are still unclear. Compounding this uncertainty, the structure of the lamina remains ill defined. In this study, we used BioID, an in vivo proximity-labeling method to identify differential interactors of A-type lamins [6]. One of these, Tpr, a nuclear pore complex (NPC) protein, is highlighted by its selective association with LaC. By employing superresolution microscopy, we demonstrate that this Tpr association is mirrored in enhanced interaction of LaC with NPCs. Further superresolution studies visualizing both endogenous A- and B-type lamins have allowed us to construct a nanometer-scale model of the mammalian nuclear lamina. Our data indicate that different A- and B-type lamin species assemble into separate filament networks that together form an extended composite structure at the nuclear periphery providing attachment sites for NPCs, thereby regulating their distribution.


Subject(s)
Intermediate Filaments/metabolism , Lamin Type A/metabolism , Nuclear Pore/physiology , Humans , Nuclear Pore Complex Proteins/metabolism , Proto-Oncogene Proteins/metabolism
9.
Elife ; 42015 Aug 27.
Article in English | MEDLINE | ID: mdl-26312502

ABSTRACT

Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization.


Subject(s)
DNA-Binding Proteins/metabolism , Lamin Type A/metabolism , Membrane Proteins/metabolism , Progeria/pathology , Telomere/metabolism , Humans , Microscopy , Protein Binding
10.
Cell Tissue Res ; 360(3): 621-31, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25532872

ABSTRACT

The intermediate filament A- and B-type lamins are key architectural components of the nuclear lamina, a proteinaceous meshwork that lies underneath the inner nuclear membrane. In the past decade, many different monogenic human diseases have been linked to mutations in various components of the nuclear lamina. Mutations in LMNA (encoding lamin A and C) cause a variety of human diseases, collectively called laminopathies. These include cardiomyopathies, muscular dystrophies, lipodystrophies and progeroid syndromes. In addition, elevated levels of lamin B1, attributable to genomic duplications of the LMNB1 locus, cause adult-onset autosomal dominant leukodystrophy. The molecular mechanism(s) enabling the mutations and perturbations of the nuclear lamina to give rise to such a wide variety of diseases that affect various tissues remains unclear. The composition of the nuclear lamina changes dynamically during development, between cell types and even within the same cell during differentiation and ageing. Here, we discuss the functional and cellular aspects of lamina remodelling and their implications for the tissue-specific nature of laminopathies.


Subject(s)
Disease , Nuclear Lamina/pathology , Animals , Cellular Senescence , Disease/genetics , Genetic Predisposition to Disease , Humans , Lamins/genetics , Mutation/genetics
11.
Nucleus ; 4(4): 283-90, 2013.
Article in English | MEDLINE | ID: mdl-23873483

ABSTRACT

The nuclear lamina underlies the inner nuclear membrane and consists of a proteinaceous meshwork of intermediate filaments: the A- and B-type lamins. Mutations in LMNA (encoding lamin A and C) give rise to a variety of human diseases including muscular dystrophies, cardiomyopathies and the premature aging syndrome progeria (HGPS). Duplication of the LMNB1 locus, leading to elevated levels of lamin B1, causes adult-onset autosomal dominant leukodystrophy (ADLD), a rare genetic disease that leads to demyelination in the central nervous system (CNS). Conversely, reduced levels of lamin B1 have been observed in HGPS patient derived fibroblasts, as well as fibroblasts and keratinocytes undergoing replicative senescence, suggesting that the regulation of lamin B1 is important for cellular physiology and disease. However, the causal relationship between low levels of lamin B1 and cellular senescence and its relevance in vivo remain unclear. How do elevated levels of lamin B1 cause disease and why is the CNS particularly susceptible to lamin B1 fluctuations? Here we summarize recent findings as to how perturbations of lamin B1 affect cellular physiology and discuss the implications this has on senescence, HGPS and ADLD.


Subject(s)
Cellular Senescence , Disease , Lamin Type B/metabolism , Humans
12.
J Cell Biol ; 200(5): 605-17, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-23439683

ABSTRACT

The nuclear lamina consists of A- and B-type lamins. Mutations in LMNA cause many human diseases, including progeria, a premature aging syndrome, whereas LMNB1 duplication causes adult-onset autosomal dominant leukodystrophy (ADLD). LMNB1 is reduced in cells from progeria patients, but the significance of this reduction is unclear. In this paper, we show that LMNB1 protein levels decline in senescent human dermal fibroblasts and keratinocytes, mediated by reduced transcription and inhibition of LMNB1 messenger ribonucleic acid (RNA) translation by miRNA-23a. This reduction is also observed in chronologically aged human skin tissue. To determine whether altered LMNB1 levels cause senescence, we either increased or reduced LMNB1. Both LMNB1 depletion and overexpression inhibited proliferation, but only LMNB1 overexpression induced senescence, which was prevented by telomerase expression or inactivation of p53. This phenotype was exacerbated by a simultaneous reduction of LMNA/C. Our results demonstrate that altering LMNB1 levels inhibits proliferation and are relevant to understanding the molecular pathology of ADLD.


Subject(s)
Cell Proliferation , Cellular Senescence , Fibroblasts/metabolism , Keratinocytes/metabolism , Lamin Type B/metabolism , Cell Differentiation , Cells, Cultured , DNA Damage , DNA-Binding Proteins/metabolism , Down-Regulation , Fibroblasts/pathology , Genotype , Humans , Keratinocytes/pathology , Lamin Type A/metabolism , Lamin Type B/genetics , Membrane Proteins/metabolism , MicroRNAs/metabolism , Nuclear Lamina/metabolism , Pelizaeus-Merzbacher Disease/genetics , Pelizaeus-Merzbacher Disease/metabolism , Pelizaeus-Merzbacher Disease/pathology , Phenotype , RNA Interference , RNA, Messenger/metabolism , Skin Aging , Telomerase/metabolism , Time Factors , Transcription, Genetic , Transfection , Tumor Suppressor Protein p53/metabolism , Up-Regulation
13.
Neurobiol Dis ; 26(2): 323-31, 2007 May.
Article in English | MEDLINE | ID: mdl-17336078

ABSTRACT

Loss of function of the myotubularin (MTM)-related protein 2 (MTMR2) in Schwann cells causes Charcot-Marie-Tooth disease type 4B1, a severe demyelinating neuropathy, but the consequences of MTMR2 disruption in Schwann cells are unknown. We established the expression profile of MTMR2 by real-time RT-PCR during rat myelination and showed it to be preferentially expressed at the onset of the myelination period. We developed a model in which MTMR2 loss of function was reproduced in primary cultures of Schwann cells by RNA interference. We found that depletion of MTMR2 in Schwann cells decreased their rate of proliferation. Furthermore, when cultivated in serum-free medium, MTMR2 depletion increased the number of Schwann cells that died by a caspase-dependent process. These results support the hypothesis that loss of MTMR2 in patients, by decreasing Schwann cells proliferation and survival, may impair the first stages of myelination of the peripheral nervous system.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Gene Silencing , Myelin Sheath/genetics , Peripheral Nerves/metabolism , Protein Tyrosine Phosphatases/genetics , Schwann Cells/metabolism , Animals , Animals, Newborn , Apoptosis/drug effects , Apoptosis/genetics , Caspases/metabolism , Cell Death/drug effects , Cell Death/genetics , Cell Proliferation , Cells, Cultured , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/physiopathology , Culture Media, Serum-Free/pharmacology , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Myelin Sheath/metabolism , Myelin Sheath/pathology , Peripheral Nerves/pathology , Peripheral Nerves/physiopathology , Protein Tyrosine Phosphatases, Non-Receptor , RNA Interference , Rats , Schwann Cells/pathology
14.
Brain ; 128(Pt 3): 540-9, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15689363

ABSTRACT

Experimental transplantation in rodent models of CNS demyelination has led to the idea that Schwann cells may be candidates for cell therapy in human myelin diseases. Here we investigated the ability of Schwann cells autografts to generate myelin in the demyelinated monkey spinal cord. We report that monkey Schwann cells derived from adult peripheral nerve biopsies retain, after growth factor expansion and transduction with a lentiviral vector encoding green fluorescent protein, the ability to differentiate in vitro into promyelinating cells. When transplanted in the demyelinated nude mouse spinal cord, they promoted functional and anatomical repair of the lesions (n = 12). Furthermore, we obtained evidence by immunohistochemistry (n = 2) and electron microscopy (n = 4) that autologous transplantation of expanded monkey Schwann cells in acute lesions of the monkey spinal cord results in the repair of large areas of demyelination; up to 55% of the axons were remyelinated by donor Schwann cells, the remaining ones being remyelinated by oligodendrocytes. Autologous grafts of Schwann cells may thus be of therapeutic value for myelin repair in the adult CNS.


Subject(s)
Demyelinating Diseases/therapy , Myelin Sheath/physiology , Nerve Regeneration , Schwann Cells/transplantation , Spinal Cord Diseases/therapy , Animals , Cell Differentiation , Cell Division , Cells, Cultured , Demyelinating Diseases/pathology , Disease Models, Animal , Female , Genetic Vectors , HIV/genetics , Macaca fascicularis , Male , Mice , Mice, Nude , Myelin Sheath/ultrastructure , Schwann Cells/virology , Spinal Cord/ultrastructure , Spinal Cord Diseases/pathology , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...