Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36634920

ABSTRACT

BACKGROUND: Pixatimod is a unique activator of the Toll-like Receptor 9 pathway. This phase I trial evaluated safety, efficacy and pharmacodynamics of pixatimod and PD-1 inhibitor nivolumab in immunologically cold cancers. METHODS: 3+3 dose escalation with microsatellite stable metastatic colorectal cancer (MSS mCRC) and metastatic pancreatic ductal adenocarcinoma (mPDAC) expansion cohorts. Participants received pixatimod once weekly as a 1-hour intravenous infusion plus nivolumab every 2 weeks. Objectives included assessment of safety, antitumor activity, pharmacodynamics, and pharmacokinetic profile. RESULTS: Fifty-eight participants started treatment. The maximum tolerated dose of pixatimod was 25 mg in combination with 240 mg nivolumab, which was used in the expansion phases of the study. Twenty-one grade 3-5 treatment-related adverse events were reported in 12 participants (21%); one participant receiving 50 mg pixatimod/nivolumab had a treatment-related grade 5 AE. The grade 3/4 rate in the MSS mCRC cohort (n=33) was 12%. There were no responders in the mPDAC cohort (n=18). In the MSS mCRC cohort, 25 participants were evaluable (initial postbaseline assessment scans >6 weeks); of these, three participants had confirmed partial responses (PR) and eight had stable disease (SD) for at least 9 weeks. Clinical benefit (PR+SD) was associated with lower Pan-Immune-Inflammation Value and plasma IL-6 but increased IP-10 and IP-10/IL-8 ratio. In an MSS mCRC participant with PR as best response, increased infiltration of T cells, dendritic cells, and to a lesser extent NK cells, were evident 5 weeks post-treatment. CONCLUSIONS: Pixatimod is well tolerated at 25 mg in combination with nivolumab. The efficacy signal and pharmacodynamic changes in MSS mCRC warrants further investigation. TRIAL REGISTRATION NUMBER: NCT05061017.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Humans , Nivolumab/pharmacology , Nivolumab/therapeutic use , Toll-Like Receptor 9 , Chemokine CXCL10 , Adenocarcinoma/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Angiogenesis Inhibitors/therapeutic use , Microsatellite Repeats , Pancreatic Neoplasms
2.
Curr Protoc Cytom ; Chapter 11: 11.20.1-11.20.23, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23835802

ABSTRACT

Malaria, caused by protozoan Plasmodium parasites, kills ~800,000 people each year. Exact figures are uncertain because presumptive diagnoses are often made without identifying parasites in patients' blood either by microscopy, using Giemsa's century-old stain, or by simpler tests that are ultimately dependent on microscopy for quality control. Microscopy itself relies on trained observers' ability to detect subtle morphological features of parasitized red blood cells, only a few of which may be present on a slide. Quantitative and objective flow cytometric measurements of cellular constituents such as DNA, RNA, and the malaria pigment hemozoin are now useful in research in malaria biology and pharmacology, and can provide more reliable identification of parasite species and developmental stages and better detection of low-density parasitemia than could microscopy. The same measurements can now be implemented in much smaller, simpler, cheaper imaging cytometers, potentially providing a more accurate and precise diagnostic modality.


Subject(s)
Flow Cytometry/methods , Malaria/diagnosis , Malaria/pathology , Microscopy/methods , Animals , Azure Stains , Biomedical Research , Humans , Malaria/epidemiology , Malaria/parasitology , Parasites/physiology
3.
Virology ; 318(1): 280-94, 2004 Jan 05.
Article in English | MEDLINE | ID: mdl-14972554

ABSTRACT

The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6.


Subject(s)
Cell Nucleus/virology , Cell Transformation, Viral , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/physiology , Nerve Tissue Proteins/metabolism , Cell Line, Tumor , Cell Nucleus Structures , Cyclic AMP Response Element-Binding Protein , Epstein-Barr Virus Nuclear Antigens/genetics , Gene Deletion , Green Fluorescent Proteins , HeLa Cells , Herpesvirus 4, Human/genetics , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Nerve Tissue Proteins/genetics , RNA-Binding Proteins , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SMN Complex Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...