Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 21646, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517573

ABSTRACT

Flavone has recently been proved as a promising scaffold for the development of a novel drug against dengue fever, one of the major health threats globally. However, the structure-activity relationship study of flavones on the anti-dengue activity remains mostly limited to the natural-occuring analogs. Herein, 27 flavone analogs were successfully synthesized, of which 5 analogs (5e, 5h, 5o, 5q, and 5r) were novel. In total, 33 analogs bearing a diverse range of substituents were evaluated for their efficacy against DENV2-infected LLC/MK2 cells. The introduction of electron-withdrawing groups on ring B such as Br (5m) or NO2 (5n and 5q) enhanced the activity significantly. In particular, the tri-ester 5d and di-ester 5e exhibited low toxicity against normal cell, and exceptional DENV2 inhibition with the EC50 as low as 70 and 68 nM, respectively, which is over 300-fold more active compared to the original baicalein reference. The viral targets for these potent flavone analogs were predicted to be NS5 MTase and NS5 RdRp, as suggested by the likelihood ratios from the molecular docking study. The great binding interaction energy of 8-bromobaicalein (5f) confirms the anti-dengue activity at atomistic level. The physicochemical property of all the synthetic flavone analogs in this study were predicted to be within the acceptable range. Moreover, the QSAR model showed the strong correlation between the anti-dengue activity and the selected molecular descriptors. This study emphasizes the great potential of flavone as a core structure for further development as a novel anti-dengue agent in the future.


Subject(s)
Flavones , Molecular Docking Simulation , Flavones/chemistry , Structure-Activity Relationship , Esters
2.
Molecules ; 26(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834059

ABSTRACT

A flavonoid is a versatile core structure with various cellular, immunological, and pharmacological effects. Recently, flavones have shown anti-dengue activities by interfering with viral translation and replication. However, the molecular target is still elusive. Here we chemically modified apigenin by adding an alkyne moiety into the B-ring hydroxyl group. The alkyne serves as a chemical tag for the alkyne-azide cycloaddition reaction for subcellular visualization. The compound located at the perinuclear region at 1 and 6 h after infection. Interestingly, the compound signal started shifting to vesicle-like structures at 6 h and accumulated at 24 and 48 h after infection. Moreover, the compound treatment in dengue-infected cells showed that the compound restricted the viral protein inside the vesicles, especially at 48 h. As a result, the dengue envelope proteins spread throughout the cells. The alkyne-tagged apigenin showed a more potent efficacy at the EC50 of 2.36 ± 0.22, and 10.55 ± 3.37 µM, respectively, while the cytotoxicities were similar to the original apigenin at the CC50 of 70.34 ± 11.79, and 82.82 ± 11.68 µM, respectively. Molecular docking confirmed the apigenin binding to the previously reported target, ribosomal protein S9, at two binding sites. The network analysis, homopharma, and molecular docking revealed that the estrogen receptor 1 and viral NS1 were potential targets at the late infection stage. The interactions could attenuate dengue productivity by interfering with viral translation and suppressing the viral proteins from trafficking to the cell surface.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Apigenin/chemistry , Apigenin/pharmacology , Dengue Virus/drug effects , Alkynes/chemistry , Alkynes/pharmacology , Animals , Cell Line , Cycloaddition Reaction , Dengue/drug therapy , Drug Discovery , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...