Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 1559, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30733498

ABSTRACT

When corrosion is the dominant failure factor in industrial application and at the same time high mechanical properties are required, aluminum bronze is one of the best candidates. Hence, there is a continuous quest for increasing the lifetime of aluminum bronze alloys through enhancing the abrasion and corrosion resistance. Existing methods are based on modifying the bulk properties of alloy or surface modification which required sophisticated equipment and process control. This approach has limited application for advanced components because of high price and difficulty to apply. In this research, we developed an innovative approach to enhance the corrosion and abrasion resistance of aluminum bronze through selective surface diffusion process. In this process, we have used waste materials as input and the modified surface has formed in a single and green process. New surface structure consists of finely dispersed kappa phase (χ ) in uniform alpha (α) solid solution matrix. Results have demonstrated that this uniform diffused modified surface layer has improved hardness of the base material and both corrosion and abrasion resistance has increased. This novel surface modification technique has opened a pathway for using waste materials as input for surface modification of aluminum bronze to meet the needs of industrial applications in a cost effective and environmentally friendly way.

2.
Sci Rep ; 6: 38740, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929096

ABSTRACT

Abrasion and corrosion resistant steel has attracted considerable interest for industrial application as a means of minimising the costs associated with product/component failures and/or short replacement cycles. These classes of steels contain alloying elements that increase their resistance to abrasion and corrosion. Their benefits, however, currently come at a potentially prohibitive cost; such high performance steel products are both more technically challenging and more expensive to produce. Although these methods have proven effective in improving the performance of more expensive, high-grade steel components, they are not economically viable for relatively low cost steel products. New options are needed. In this study, a complex industrial waste stream has been transformed in situ via precisely controlled high temperature reactions to produce an ultrahard ceramic surface on steel. This innovative ultrahard ceramic surface increases both the hardness and compressive strength of the steel. Furthermore, by modifying the composition of the waste input and the processing parameters, the ceramic surface can be effectively customised to match the intended application of the steel. This economical new approach marries industry demands for more cost-effective, durable steel products with global imperatives to address resource depletion and environmental degradation through the recovery of resources from waste.

SELECTION OF CITATIONS
SEARCH DETAIL
...