Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304744, 2024.
Article in English | MEDLINE | ID: mdl-38833504

ABSTRACT

Passive acoustic monitoring is an essential tool for studying beaked whale populations. This approach can monitor elusive and pelagic species, but the volume of data it generates has overwhelmed researchers' ability to quantify species occurrence for effective conservation and management efforts. Automation of data processing is crucial, and machine learning algorithms can rapidly identify species using their sounds. Beaked whale acoustic events, often infrequent and ephemeral, can be missed when co-occurring with signals of more abundant, and acoustically active species that dominate acoustic recordings. Prior efforts on large-scale classification of beaked whale signals with deep neural networks (DNNs) have approached the class as one of many classes, including other odontocete species and anthropogenic signals. That approach tends to miss ephemeral events in favor of more common and dominant classes. Here, we describe a DNN method for improved classification of beaked whale species using an extensive dataset from the western North Atlantic. We demonstrate that by training a DNN to focus on the taxonomic family of beaked whales, ephemeral events were correctly and efficiently identified to species, even with few echolocation clicks. By retrieving ephemeral events, this method can support improved estimation of beaked whale occurrence in regions of high odontocete acoustic activity.


Subject(s)
Acoustics , Machine Learning , Vocalization, Animal , Whales , Animals , Whales/physiology , Whales/classification , Vocalization, Animal/physiology , Neural Networks, Computer
2.
Glob Chang Biol ; 26(9): 4812-4840, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32450009

ABSTRACT

Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate-driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata) and North Atlantic right whales (NARW; Eubalaena glacialis). This study assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. borealis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom-mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004-2010 and 2011-2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid-Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.


Subject(s)
Acoustics , Animals , Atlantic Ocean , Caribbean Region , Greenland , Southeastern United States
3.
J Acoust Soc Am ; 144(5): 2691, 2018 11.
Article in English | MEDLINE | ID: mdl-30522279

ABSTRACT

True's beaked whales (Mesoplodon mirus) were encountered on two separate shipboard surveys on 24 July 2016 and 16 September 2017 in the western North Atlantic Ocean. Recordings were made using a hydrophone array towed 300 m behind the ship. In 2016, three different groups were sighted within 1500 m of the ship; clicks were recorded for 26 min. In 2017, a single group of five whales was tracked over the course of five hours in which the ship maintained a distance <4000 m from the group. A total of 2938 frequency-modulated (FM) clicks and 7 buzzes were recorded from both encounters. Plausible inter-click-intervals (ICIs) were calculated from 2763 clicks, and frequency and duration measurements were calculated from 2150 good quality FM clicks. The median peak frequencies were 43.1 kHz (2016, n = 718) and 43.5 kHz (2017, n = 1432). Median ICIs were 0.17 s (2016) and 0.19 s (2017). The spectra and measurements of the recorded clicks closely resemble Gervais's beaked whale clicks (Mesoplodon europaeus) and distinguishing between the two species in acoustic data sets proves difficult. The acoustic behavior of True's beaked whales was previously unknown; this study provides a description of echolocation clicks produced by this species.


Subject(s)
Acoustics/instrumentation , Echolocation/physiology , Whales/physiology , Animals , Atlantic Ocean , Behavior, Animal/physiology , Sound Spectrography/methods , Species Specificity , Vocalization, Animal/physiology , Whales/classification , Whales/psychology
4.
R Soc Open Sci ; 5(2): 171298, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29515847

ABSTRACT

The function of song has been well studied in numerous taxa and plays a role in mediating both intersexual and intrasexual interactions. Humpback whales are among few mammals who sing, but the role of sexual selection on song in this species is poorly understood. While one predominant hypothesis is that song mediates male-male interactions, the mechanism by which this may occur has never been explored. We applied metrics typically used to assess songbird interactions to examine song sequences and movement patterns of humpback whale singers. We found that males altered their song presentation in the presence of other singers; focal males increased the rate at which they switched between phrase types (p = 0.005), and tended to increase the overall evenness of their song presentation (p = 0.06) after a second male began singing. Two-singer dyads overlapped their song sequences significantly more than expected by chance. Spatial analyses revealed that change in distance between singers was related to whether both males kept singing (p = 0.012), with close approaches leading to song cessation. Overall, acoustic interactions resemble known mechanisms of mediating intrasexual interactions in songbirds. Future work should focus on more precisely resolving how changes in song presentation may be used in competition between singing males.

SELECTION OF CITATIONS
SEARCH DETAIL
...