Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 150(2): 347-68, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26794142

ABSTRACT

Adult neurogenesis occurs in brain subventricular zone (SVZ). Our recent data reveal an elevated proliferation of BrdU(+) cells in SVZ following subchronic manganese (Mn) exposure in rats. This study was designed to distinguish Mn effect on the critical stage of adult neurogenesis, ie, proliferation, migration, survival and differentiation from the SVZ via the rostral migratory stream to the olfactory bulb (OB). Adult rats received a single ip-dose of BrdU at the end of 4-week Mn exposure to label proliferating cells. Immunostaining and cell-counting showed a 48% increase of BrdU(+) cells in Mn-exposed SVZ than in controls (P< .05). These BrdU(+) cells were identified as a mixed population of mainly GFAP(+) type-B neural stem cells, Nestin(+) type-C transit progenitor cells, DCX(+) migratory neuroblasts and Iba1(+) microglial cells. Another group of adult rats received 3 daily ip-injections of BrdU followed by subchronic Mn exposure. By 4-week post BrdU labeling, most of the surviving BrdU(+) cells in the OB were differentiated into NeuN(+) matured neurons. However, survival rates of BrdU/NeuN/DAPI triple-labeled cells in OB were 33% and 64% in Mn-exposed and control animals, respectively (P< .01). Infusion of Cu directly into the lateral ventricle significantly decreased the cell proliferation in the SVZ. Taken together, these results suggest that Mn exposure initially enhances the cell proliferation in adult SVZ. In the OB, however, Mn exposure significantly reduces the surviving adult-born cells and markedly inhibits their differentiation into mature neurons, resulting in an overall decreased adult neurogenesis in the OB.


Subject(s)
Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Chlorides/toxicity , Lateral Ventricles/drug effects , Neurogenesis/drug effects , Olfactory Bulb/drug effects , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Doublecortin Protein , Infusions, Intraventricular , Injections, Intraperitoneal , Lateral Ventricles/pathology , Male , Manganese Compounds , Olfactory Bulb/pathology , Rats, Sprague-Dawley
2.
PLoS One ; 10(10): e0141340, 2015.
Article in English | MEDLINE | ID: mdl-26505195

ABSTRACT

Fast-scan cyclic voltammetry (FSCV) is a powerful technique for measuring sub-second changes in neurotransmitter levels. A great time-limiting factor in the use of FSCV is the production of high-quality recording electrodes; common recording electrodes consist of cylindrical carbon fiber encased in borosilicate glass. When the borosilicate is heated and pulled, the molten glass ideally forms a tight seal around the carbon fiber cylinder. It is often difficult, however, to guarantee a perfect seal between the glass and carbon. Indeed, much of the time spent creating electrodes is in an effort to find a good seal. Even though epoxy resins can be useful in this regard, they are irreversible (seals are permanent), wasteful (epoxy cannot be reused once hardener is added), hazardous (hardeners are often caustic), and require curing. Herein we characterize paraffin as an electrode sealant for FSCV microelectrodes. Paraffin boasts the advantages of near-immediate curing times, simplicity in use, long shelf-life and stable waterproof seals capable of withstanding extended cycling. Borosilicate electrode tips were left intact or broken and dipped in paraffin embedding wax. Excess wax was removed from the carbon surface with xyelenes or by repeated cycling at an extended waveform (-0.4 to 1.4V, 400 V/s, 60 Hz). Then, the waveform was switched to a standard waveform (-0.4 to 1.3V, 400 V/s, 10 Hz) and cycled until stable. Wax-sealing does not inhibit electrode sensitivity, as electrodes detected linear changes in dopamine before and after wax (then xylenes) exposure. Paraffin seals are intact after 11 days of implantation in the mouse, and still capable of measuring transient changes in in vivo dopamine. From this it is clear that paraffin wax is an effective sealant for FSCV electrodes that provides a convenient substitute to epoxy sealants.


Subject(s)
Dopamine/metabolism , Electrochemistry , Electrodes , Paraffin/chemistry , Animals , Carbon/chemistry , Carbon Fiber , Dopamine/chemistry , Glass/chemistry , Mice , Neurotransmitter Agents , Oxidation-Reduction , Waxes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...