Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Exp Hematol Oncol ; 11(1): 26, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35538512

ABSTRACT

BACKGROUND: CD47/SIRPα axis is recognized as an innate immune checkpoint and emerging clinical data validate the interest of interrupting this pathway in cancer, particularly in hematological malignancies. In preclinical models, CD47/SIRPα blocking agents have been shown to mobilize phagocytic cells and trigger adaptive immune responses to eliminate tumors. Here, we describe the mechanisms afforded by a CD47xCD19 bispecific antibody (NI-1701) at controlling tumor growth in a mouse xenograft B-cell lymphoma model. METHODS: The contribution of immune effector cell subsets behind the antitumor activity of NI-1701 was investigated using flow cytometry, transcriptomic analysis, and in vivo immune-cell depletion experiments. RESULTS: We showed that NI-1701 treatment transformed the tumor microenvironment (TME) into a more anti-tumorigenic state with increased NK cells, monocytes, dendritic cells (DC) and MHCIIhi tumor-associated macrophages (TAMs) and decreased granulocytic myeloid-derived suppressor cells. Notably, molecular analysis of isolated tumor-infiltrating leukocytes following NI-1701 administration revealed an upregulation of genes linked to immune activation, including IFNγ and IL-12b. Moreover, TAM-mediated phagocytosis of lymphoma tumor cells was enhanced in the TME in the presence of NI-1701, highlighting the role of macrophages in tumor control. In vivo cell depletion experiments demonstrated that both macrophages and NK cells contribute to the antitumor activity. In addition, NI-1701 enhanced dendritic cell-mediated phagocytosis of tumor cells in vitro, resulting in an increased cross-priming of tumor-specific CD8 T cells. CONCLUSIONS: The study described the mechanisms afforded by the CD47xCD19 bispecific antibody, NI-1701, at controlling tumor growth in lymphoma mouse model. NI-1701 is currently being evaluated in a Phase I clinical trial for the treatment of refractory or relapsed B-cell lymphoma (NCT04806035).

2.
J Cancer Res Clin Oncol ; 148(8): 2013-2022, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35476232

ABSTRACT

BACKGROUND: Hairy cell leukemia (HCL) is a rare chronic B cell malignancy, characterized by infiltration of bone marrow, blood and spleen by typical "hairy cells" that bear the BRAFV600E mutation. However, in addition to the intrinsic activation of the MAP kinase pathway as a consequence of the BRAFV600E mutation, the potential participation of other signaling pathways to the pathophysiology of the disease remains unclear as the precise origin of the malignant hairy B cells. MATERIALS AND METHODS: Using mRNA gene expression profiling based on the Nanostring technology and the analysis of 290 genes with crucial roles in B cell lymphomas, we defined a 17 gene expression signature specific for HCL. RESULTS: Separate analysis of samples from classical and variant forms of hairy cell leukemia showed almost similar mRNA expression profiles apart from overexpression in vHCL of the immune checkpoints CD274 and PDCD1LG2 and underexpression of FAS. Our results point to a post-germinal memory B cell origin and in some samples to the activation of the non-canonical NF-κB pathway. CONCLUSIONS: This study provides a better understanding of the pathogenesis of HCL and describes new and potential targets for treatment approaches and guidance for studies in the molecular mechanisms of HCL.


Subject(s)
Leukemia, Hairy Cell , B-Lymphocytes/pathology , Humans , Leukemia, Hairy Cell/drug therapy , Leukemia, Hairy Cell/genetics , Leukemia, Hairy Cell/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA, Messenger , Transcriptome
3.
Res Q Exerc Sport ; 91(3): 433-444, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31906804

ABSTRACT

Purpose: Motor outputs are governed by dynamics organized around stable states and spontaneous transitions: we seek to investigate the swimmers' motor behavior flexibility as a function of speed and aquatic environment manipulations. Method: Eight elite male swimmers partook an eight-level incremental test (4% increment from 76% to 104% of their mean speed on 200 m front crawl) in a quasi-static aquatic environment (pool). Swimmers then partook another incremental test at similar effort in a dynamic aquatic environment (swimming flume) up to maximal speed. Stroke rate (SR), index of coordination (IdC) and intersegmental coupling of the upper limbs were computed from the inertial sensors located on the upper limbs and the sacrum. Results: With speed increase, SR values presented a steeper linear increase in the pool than in the flume. IdC values increased also in the pool but remained stable in the flume. Individual SR and IdC vs. speed increase displayed second-order polynomial dynamics, indicative of adaptive flexibility with a range of extremum values more restricted in the flume. Finally, a reduction of the in-phase coordination pattern was noted with flume speed increase. Conclusions: Action possibilities were strongly constrained in the flume at the highest speeds as the fluid flow led to discontinuity in the propulsive actions of the upper limbs and lack of in-phase inter-segmental coordination. This highlights that the behavioral flexibility was restricted in the flume in comparison to the pool, in which the exploitation of opportunities for action involved a larger number of degrees of freedom in the movement.


Subject(s)
Motor Skills/physiology , Swimming/physiology , Upper Extremity/physiology , Environment , Humans , Male , Water Movements , Young Adult
4.
Motor Control ; 23(3): 418-442, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30827190

ABSTRACT

Swimming is a challenging locomotion, involving the coordination of upper and lower limbs to propel the body forward in a highly resistive aquatic environment. During front crawl, freestyle stroke, alternating rotational motion of the upper limbs above and below the waterline, is coordinated with alternating lower limb pendulum actions. The aim of this study was to investigate the upper to lower limbs coordination dynamics of eight male elite front crawlers while increasing swimming speed and disturbing the aquatic environment (i.e., pool vs. flume). Upper to lower limb frequency ratios, coordination, coupling strength, and asymmetry were computed from data collected by inertial measurement units. Significant speed effect was observed, leading to transitions from 1∶1 to 1∶3 frequency ratios (1∶3 overrepresented), whereas 1∶2 frequency ratio was rarely used. Flume swimming led to a significant lower coupling strength at low speeds and higher asymmetries, especially at the highest speeds, probably related to the flume dynamic environment.


Subject(s)
Biomechanical Phenomena/physiology , Locomotion/physiology , Lower Extremity/physiology , Swimming/physiology , Upper Extremity/physiology , Adult , Female , Humans , Male , Young Adult
5.
Hum Mov Sci ; 55: 240-254, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28846856

ABSTRACT

This study assessed perception-action coupling in expert swimmers by focusing on their upper limb inter-segmental coordination in front crawl. To characterize this coupling, we manipulated the fluid flow and compared trials performed in a swimming pool and a swimming flume, both at a speed of 1.35ms-1. The temporal structure of the stroke cycle and the spatial coordination and its variability for both hand/lower arm and lower arm/upper arm couplings of the right body side were analyzed as a function of fluid flow using inertial sensors positioned on the corresponding segments. Swimmers' perceptions in both environments were assessed using the Borg rating of perceived exertion scale. Results showed that manipulating the swimming environment impacts low-order (e.g., temporal, position, velocity or acceleration parameters) and high-order (i.e., spatial-temporal coordination) variables. The average stroke cycle duration and the relative duration of the catch and glide phases were reduced in the flume trial, which was perceived as very intense, whereas the pull and push phases were longer. Of the four coordination patterns (in-phase, anti-phase, proximal and distal: when the appropriate segment is leading the coordination of the other), flume swimming demonstrated more in-phase coordination for the catch and glide (between hand and lower arm) and recovery (hand/lower arm and lower arm/upper arm couplings). Conversely, the variability of the spatial coordination was not significantly different between the two environments, implying that expert swimmers maintain consistent and stable coordination despite constraints and whatever the swimming resistances. Investigations over a wider range of velocities are needed to better understand coordination dynamics when the aquatic environment is modified by a swimming flume. Since the design of flumes impacts significantly the hydrodynamics and turbulences of the fluid flow, previous results are mainly related to the characteristics of the flume used in the present study (or a similar one), and generalization is subject to additional investigations.


Subject(s)
Arm/physiology , Hand/physiology , Psychomotor Performance/physiology , Swimming/physiology , Acceleration , Adult , Biomechanical Phenomena , Environment , Female , Humans , Male , Perception/physiology , Water
6.
Front Psychol ; 8: 383, 2017.
Article in English | MEDLINE | ID: mdl-28352243

ABSTRACT

Motor control in swimming can be analyzed using low- and high-order parameters of behavior. Low-order parameters generally refer to the superficial aspects of movement (i.e., position, velocity, acceleration), whereas high-order parameters capture the dynamics of movement coordination. To assess human aquatic behavior, both types have usually been investigated with multi-camera systems, as they offer high three-dimensional spatial accuracy. Research in ecological dynamics has shown that movement system variability can be viewed as a functional property of skilled performers, helping them adapt their movements to the surrounding constraints. Yet to determine the variability of swimming behavior, a large number of stroke cycles (i.e., inter-cyclic variability) has to be analyzed, which is impossible with camera-based systems as they simply record behaviors over restricted volumes of water. Inertial measurement units (IMUs) were designed to explore the parameters and variability of coordination dynamics. These light, transportable and easy-to-use devices offer new perspectives for swimming research because they can record low- to high-order behavioral parameters over long periods. We first review how the low-order behavioral parameters (i.e., speed, stroke length, stroke rate) of human aquatic locomotion and their variability can be assessed using IMUs. We then review the way high-order parameters are assessed and the adaptive role of movement and coordination variability in swimming. We give special focus to the circumstances in which determining the variability between stroke cycles provides insight into how behavior oscillates between stable and flexible states to functionally respond to environmental and task constraints. The last section of the review is dedicated to practical recommendations for coaches on using IMUs to monitor swimming performance. We therefore highlight the need for rigor in dealing with these sensors appropriately in water. We explain the fundamental and mandatory steps to follow for accurate results with IMUs, from data acquisition (e.g., waterproofing procedures) to interpretation (e.g., drift correction).

7.
Sports Med ; 47(8): 1543-1554, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28181208

ABSTRACT

Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.


Subject(s)
Athletic Performance/physiology , Environment , Movement , Swimming/physiology , Athletes , Biomechanical Phenomena , Humans , Water
8.
J Appl Biomech ; 32(1): 59-68, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26398964

ABSTRACT

Performance during human movements is highly related to force and velocity muscle capacities. Those capacities are highly developed in elite athletes practicing power-oriented sports. However, it is still unclear whether the balance between their force and velocity-generating capacities constitutes an optimal profile. In this study, we aimed to determine the effect of elite sport background on the force-velocity relationship in the squat jump, and evaluate the level of optimization of these profiles. Ninety-five elite athletes in cycling, fencing, taekwondo, and athletic sprinting, and 15 control participants performed squat jumps in 7 loading conditions (range: 0%-60% of the maximal load they were able to lift). Theoretical maximal power (Pm), force (F0), and velocity (v0) were determined from the individual force-velocity relationships. Optimal profiles were assessed by calculating the optimal force (F0th) and velocity (v0th). Athletic sprinters and cyclists produced greater force than the other groups (P < .05). F0 was significantly lower than F0th, and v0 was significantly higher than v0th for female fencers and control participants, and for male athletics sprinters, fencers, and taekwondo practitioners (P < .05). Our study shows that the chronic practice of an activity leads to differently balanced force-velocity profiles. Moreover, the differences between measured and optimal force-velocity profiles raise potential sources of performance improvement in elite athletes.


Subject(s)
Athletic Performance/physiology , Movement/physiology , Sports/physiology , Adult , Biomechanical Phenomena/physiology , Case-Control Studies , Female , Humans , Male , Models, Statistical , Muscle Strength/physiology
9.
J Electromyogr Kinesiol ; 25(1): 69-76, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25467546

ABSTRACT

This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: P<0.001; peak occurrence: P=0.02) illustrating the specific role of each muscle during the push-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump.


Subject(s)
Movement , Muscle Stretching Exercises , Muscle, Skeletal/physiology , Adult , Biomechanical Phenomena , Electromyography , Female , Humans , Leg/physiology , Male
10.
Hum Mov Sci ; 39: 55-64, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25461433

ABSTRACT

This study examines the relationships between the index of coordination (IdC) and active drag (D) assuming that at constant average speed, average drag equals average propulsion. The relationship between IdC and propulsive efficiency (ep) was also investigated at maximal speed. Twenty national swimmers completed two incremental speed tests swimming front crawl with arms only in free condition and using a measurement of active drag system. Each test was composed of eight 25-m bouts from 60% to 100% of maximal intensity whereby each lap was swum at constant speed. Different regression models were tested to analyse IdC-D relationship. Correlation between IdC and ep was calculated. IdC was linked to D by linear regression (IdC=0.246·D-27.06; R(2)=0.88, P<.05); swimmers switched from catch-up to superposition coordination mode at a speed of ∼1.55ms(-1) where average D is ∼110N. No correlation between IdC and ep at maximal speed was found. The intra-individual analysis revealed that coordination plays an important role in scaling propulsive forces with higher speed levels such that these are adapted to aquatic resistance. Inter-individual analysis showed that high IdC did not relate to a high ep suggesting an individual optimization of force and power generation is at play to reach high speeds.


Subject(s)
Swimming , Adult , Algorithms , Biomechanical Phenomena , Body Size , Humans , Male , Movement , Regression Analysis , Video Recording , Water , Young Adult
11.
Acta Psychol (Amst) ; 154: 26-35, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25461440

ABSTRACT

This paper investigated neurobiological degeneracy of the motor system that emerged as a function of levels of environmental constraint. Fourteen participants performed a breaststroke-swimming task that required them to develop a specific biomechanically expert pattern and in turn provide the basis for a suitable task vehicle to study the functional role of movement variability. Inter-limb coordination was defined based on the computation of continuous relative phase between elbow and knee oscillators. Unsupervised cluster analysis on arm-leg coordination revealed the existence of different patterns of coordination when participants achieved the same task goal under different levels of environmental constraints (i.e. different amounts of forward resistances). In addition, clusters differed in terms of higher order derivatives (e.g., joint angular velocity, joint amplitude), suggesting an effective role for degeneracy in learning by allowing the exploration of the key relationships between motor organization and interacting constraints. There is evidence to suggest that neurobiological degeneracy supports the potential for motor re-organization to enhance motor learning.


Subject(s)
Learning , Motor Skills , Swimming , Adult , Female , Humans , Male , Movement , Psychomotor Performance , Swimming/psychology
12.
J Sports Sci Med ; 13(2): 223-31, 2014 May.
Article in English | MEDLINE | ID: mdl-24790473

ABSTRACT

This review updates the swim-start state of the art from a biomechanical standpoint. We review the contribution of the swim-start to overall swimming performance, the effects of various swim-start strategies, and skill effects across the range of swim-start strategies identified in the literature. The main objective is to determine the techniques to focus on in swimming training in the contemporary context of the sport. The phases leading to key temporal events of the swim-start, like water entry, require adaptations to the swimmer's chosen technique over the course of a performance; we thus define the swim-start as the moment when preparation for take-off begins to the moment when the swimming pattern begins. A secondary objective is to determine the role of adaptive variability as it emerges during the swim-start. Variability is contextualized as having a functional role and operating across multiple levels of analysis: inter-subject (expert versus non-expert), inter-trial or intra-subject (through repetitions of the same movement), and inter-preference (preferred versus non-preferred technique). Regarding skill effects, we assume that swim-start expertise is distinct from swim stroke expertise. Highly skilled swim-starts are distinguished in terms of several factors: reaction time from the start signal to the impulse on the block, including the control and regulation of foot force and foot orientation during take-off; appropriate amount of glide time before leg kicking commences; effective transition from leg kicking to break-out of full swimming with arm stroking; overall maximal leg and arm propulsion and minimal water resistance; and minimized energy expenditure through streamlined body position. Swimmers who are less expert at the swim-start spend more time in this phase and would benefit from training designed to reduce: (i) the time between reaction to the start signal and impulse on the block, and (ii) the time in transition (i.e., between gliding and leg kicking, and between leg-kicking and full swimming). Key pointsSWIMMERS MEET TWO MAIN CONSTRAINTS DURING THE START MOVEMENT: travelling more distance in the air (to get less resistance) and rotate to enter properly in the water.Swim start is a sum of compromises in all parts of it, and swim-start expertise is distinct from swim stroke expertise corresponding to best ways to manage these compromises.Variability found is contextualized as having a functional role and operating across multiple levels of analysis.

13.
Hum Mov Sci ; 33: 43-53, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24576707

ABSTRACT

The effect of three months of aerobic training on spatio-temporal and coordination parameters was examined during a swim trial at maximal aerobic speed. Nine male swimmers swam a 400-m front crawl at maximal speed twice: in trial 1, after summer break, and trial 2, after three months of aerobic training. Video analysis determined the stroke (swimming speed, stroke length, and stroke rate) and coordination (Index of Coordination and propulsive phase duration) parameters for every 50-m segment. All swimmers significantly increased their swimming speed after training. For all swimmers except one, stroke length increased and stroke rate remained constant, whereas the Index of Coordination and the propulsive phase duration decreased (p<.05). This study suggests that aerobic training developed a greater force impulse in the swimmers during the propulsive phases, which allowed them to take advantage of longer non-propulsive phases. In this case, catch-up coordination, if associated with greater stroke length, can be an efficient coordination mode that reflects optimal drag/propulsion adaptation. This finding thus provides new insight into swimmers' adaptations to the middle-distance event.


Subject(s)
Athletic Performance , Exercise , Functional Laterality , Physical Education and Training , Psychomotor Performance , Swimming/psychology , Acceleration , Adolescent , Athletic Performance/physiology , Heart Rate , Humans , Kinesthesis , Lactic Acid/blood , Male , Muscle Strength/physiology , Practice, Psychological , Psychomotor Performance/physiology , Swimming/physiology
14.
Med Sci Sports Exerc ; 46(2): 341-50, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24441214

ABSTRACT

PURPOSE: This study aimed to investigate the coordination of lower limb muscles during a specific fencing gesture in relation to its mechanical effectiveness. METHODS: Maximal isokinetic concentric and isometric plantarflexor, dorsiflexor, knee and hip extensor and flexor torques of 10 female elite saber fencers were assessed and compared between both legs. Sabers completed three trials of a specific fencing gesture (i.e., marché-fente) on a 6.60-m-long force platform system. Surface EMG activities of 15 lower limb muscles were recorded in time with ground reaction forces and separated into four distinct assault phases. EMG signals were normalized to the muscle activity assessed during maximal isometric contraction. Mechanical and EMG data were compared between both legs over the entire assault and in each phase (ANOVA). Potential correlations between muscle strength and average EMG activities were tested (Bravais-Pearson coefficient). RESULTS: EMG activity patterns showed that rear hip and knee extensor and plantarflexor muscles were mainly activated during propulsive (concentric) phases, while front hip and knee extensor muscles were strongly solicited during the final braking (eccentric) phase to decelerate the body mass. Although fencers presented greater maximal hip (+10%) and knee (+26%) extensor strength in the front than in the rear leg (P < 0.05), rear hip and knee extensor strength was significantly correlated to the maximal anteroposterior velocity (r = 0.60-0.81). Moreover, muscle activity of the rear extensors was related to average velocity during the second propulsive phase (phase 3). CONCLUSIONS: This study gathers the first evidence of a crucial role of the rear extensor muscles in fencing speed performance. Such findings suggest interesting perspectives in the definition of specific training or rehabilitation programs for elite fencers.


Subject(s)
Motor Skills , Movement/physiology , Muscle Contraction , Muscle, Skeletal/physiology , Sports/physiology , Adolescent , Adult , Biomechanical Phenomena , Electromyography , Female , Hip/physiology , Humans , Knee/physiology , Torque , Young Adult
15.
J Appl Biomech ; 30(2): 189-96, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23878208

ABSTRACT

This study compared interlimb coordination and indicators of swim efficiency and effectiveness between expert and recreational breaststroke swimmers. Arm-leg coordination of 8 expert and 10 recreational swimmers at two different paces, slow and sprint, were compared using relative phase between elbow and knee. For each participant, knee and elbow angles were assessed using a 3-dimensional video analysis system with four below and two above cameras. During each phase of the cycle, indicators of swim efficiency (intracyclic velocity variations) and effectiveness (horizontal distance, velocity peaks, acceleration peaks) were calculated. Two coordination patterns emerged between expert and recreational swimmers, with significant differences in the relative phase at the beginning of a cycle (-172.4° for experts and -106.6° for recreational swimmers) and the maximum value of relative phase (9.1° for experts and 45.9° for recreational swimmers; all P<.05). Experts' coordination was associated with higher swim effectiveness (higher acceleration peak: 2.4 m/s2 for experts and 1.6 m/s2 for recreational swimmers) and higher distance covered by the center of mass during each phase of the cycle (all P<.05). This study emphasized how experts coordinate arms and legs to achieve effective behavior, therefore exhibiting flexibility, mainly in the timing of the glide phase, to adapt to different speed.


Subject(s)
Athletic Performance/physiology , Leg/physiology , Swimming/physiology , Acceleration , Biomechanical Phenomena , Female , Humans , Male , Video Recording , Young Adult
16.
J Sports Sci Med ; 12(4): 630-8, 2013.
Article in English | MEDLINE | ID: mdl-24421721

ABSTRACT

While some studies have demonstrated that respiratory muscle endurance training (RMET) improves performances during various exercise modalities, controversy continues about the transfer of RMET effects to swimming performance. The objective of this study was to analyze the added effects of respiratory muscle endurance training (RMET; normocapnic hyperpnea) on the respiratory muscle function and swimming performance of young well-trained swimmers. Two homogenous groups were recruited: ten swimmers performed RMET (RMET group) and ten swimmers performed no RMET (control group). During the 8-week RMET period, all swimmers followed the same training sessions 5-6 times/week. Respiratory muscle strength and endurance, performances on 50- and 200-m trials, effort perception, and dyspnea were assessed before and after the intervention program. The results showed that ventilatory function parameters, chest expansion, respiratory muscle strength and endurance, and performances were improved only in the RMET group. Moreover, perceived exertion and dyspnea were lower in the RMET group in both trials (i.e., 50- and 200-m). Consequently, the swim training associated with RMET was more effective than swim training alone in improving swimming performances. RMET can therefore be considered as a worthwhile ergogenic aid for young competitive swimmers. Key PointsRespiratory muscle endurance training improves the performance.Respiratory muscle endurance training improves the ventilatory function parameters, chest expansion, respiratory muscle strength and endurance.Respiratory muscle endurance training decreases the perceived exertion and dyspnea.Respiratory muscle endurance training can be considered as a worthwhile ergogenic aid for young competitive swimmers.

17.
J Strength Cond Res ; 25(10): 2681-90, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21912344

ABSTRACT

The effect of (a) increasing velocity and (b) added resistance was examined on the stroke (stroke length, stroke rate [SR]), coordination (index of coordination [IdC], propulsive phases), and force (impulse and peaks) parameters of 7 national-level front crawl swimmers (17.14 ± 2.73 years of swimming; 57.67 ± 1.62 seconds in the 100-m freestyle). The additional resistance was provided by a specially designed parachute. Parachute swimming (PA) and free-swimming (F) conditions were compared at 5 velocities per condition. Video footage was used to calculate the stroke and coordination parameters, and sensors allowed the determination of force parameters. The results showed that (a) an increase in velocity (V) led to increases in SR, IdC, propulsive phase duration, and peak propulsive force (p < 0.05), but no significant change in force impulse per cycle, whatever the condition (PA or F); and (b) in PA conditions, significant increases in the IdC, propulsive phase duration, and force impulse and a decrease in SR were recorded at high velocities (p < 0.05). These results indicated that, in the F condition, swimmers adapted to the change in velocity by modifying stroke and coordination rather than force parameters, whereas the PA condition enhanced the continuity of propulsive action and force development. Added resistance, that is, "parachute training," can be used for specific strength training purposes as long as swimming is performed near maximum velocity.


Subject(s)
Muscle Strength/physiology , Psychomotor Performance/physiology , Resistance Training , Swimming/physiology , Arm/physiology , Athletes , Biomechanical Phenomena/physiology , Humans , Male , Muscle, Skeletal/physiology
18.
Res Q Exerc Sport ; 82(1): 1-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21462680

ABSTRACT

The purpose of this study was to determine whether the Index of Coordination (IdC) and the propulsive phase durations can differentiate performance level during a maximal 400-m front crawl swim trial. Sixteen male swimmers constituted two groups based on performance level (G1: experts; G2: recreational). All participants swam the 400-m front crawl at maximal speed. Video analysis determined the stroke (swimming speed, stroke length, stroke rate) and coordination (IdC) parameters for every 50 m. Both stroke and coordination parameters discriminated performance level. The expert group had significantly higher values for speed and stroke length and lower values for the relative propulsive phase duration and IdC (p < .05). However there was no significant change in coordination parameters for either group throughout the trial. This suggests that, when associated with greater stroke length, catch-up coordination can be an efficient coordination mode that reflects optimal drag/propulsion adaptation. This finding provides new insight into swimmers' adaptations in a middle-distance event.


Subject(s)
Athletic Performance/physiology , Swimming/physiology , Upper Extremity/physiology , Adult , Analysis of Variance , Biomechanical Phenomena , Humans , Male , Video Recording , Young Adult
19.
J Strength Cond Res ; 24(6): 1458-63, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20453683

ABSTRACT

The first aim of this study was to investigate how visual and somatosensory information influence handstand performance according to the expertise level of gymnasts. The second aim was to determine whether the general perceptual characteristics of gymnasts are linked with their handstand performances. In the first experiment, expert and nonexpert gymnasts performed a handstand on a force platform in 4 conditions: open or closed eyes on a firm or foam support. To assess the gymnasts' performance, the surface area (mm) covered by the trajectory of the center of pressure (CoP) was recorded. The results showed that (a) experts had significantly (p<0.05) better postural performance during the handstand than did nonexperts, whatever the visual condition, (b) nonexperts were unable to maintain the handstand without vision, whatever the support, and (c) the CoP surface was significantly greater on the foam surface than on the firm surface for both experts and nonexperts and, only for experts, whatever the visual condition. In the second experiment, the gymnasts' general perceptual characteristics (field dependence-independence) were evaluated using the rod-and-frame test (RFT). Experts were less field dependent than nonexperts, and the RFT results were positively correlated with postural performance. We thus suggest that, although they did not cope more efficiently with the somatosensory perturbation, expert gymnasts had developed a capacity to use the remaining sensory modalities efficiently when vision was removed. Also, a high level of gymnastics training may improve the ability to change the frame of reference. For the handstand, exercises alternating the use of visual and nonvisual information could be an interesting technique for trainers to improve gymnasts' performance.


Subject(s)
Field Dependence-Independence , Gymnastics/psychology , Postural Balance , Self Concept , Adolescent , Adult , Athletes , Athletic Performance , Female , Humans , Male , Professional Competence , Young Adult
20.
J Appl Biomech ; 26(2): 150-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20498486

ABSTRACT

This study is aimed at examining the relationships between floatation parameters, assessed by field tests and the stroking characteristics of breaststroke swimmers. The floatation parameters were evaluated for 23 males and 23 females by the hydrostatic lift test, the sinking force acting at the ankle test and the maximal glide length after a push-off from the pool wall test. The swimmers performed two trials at submaximal and sprint pace, and then, from the data given by a PC-video velocity system, the duration and velocity of their propulsive, recovery and glide phases were analyzed. In the female group and at slow pace, glide duration is correlated with hydrostatic lift (r = .62) and with maximal glide length (r = .44); mean glide velocity is correlated with hydrostatic lift (r = .73). In the male group and at slow pace, the sinking force was correlated with the glide phase (r = -0.66) and with the mean glide velocity (r = -0.78). At sprint velocity, the hydrostatic lift is correlated with the glide phase in the female group (r = .52). Floatation parameters have an impact on the gliding phase of the breaststroke cycle.


Subject(s)
Models, Biological , Motor Skills/physiology , Physical Exertion/physiology , Swimming/physiology , Task Performance and Analysis , Adolescent , Computer Simulation , Female , Humans , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...