Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(19): 5250-5258, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38722188

ABSTRACT

Chemical transformations in charge transfer states result from the interplay between electronic dynamics and nuclear reorganization along excited-state trajectories. Here, we investigate the ultrafast structural dynamics following photoinduced electron transfer from the metal-metal-to-ligand charge transfer state of an electron donor, a Pt dimer complex, to a covalently linked electron acceptor group using ultrafast time-resolved wide-angle X-ray scattering and optical transient absorption spectroscopy methods to disentangle the interdependence of the excited-state electronic and nuclear dynamics. Following photoexcitation, Pt-Pt bond formation and contraction takes up to 1 ps, much slower than the corresponding process in analogous complexes without electron acceptor groups. Because the Pt-Pt distance change is slow with respect to excited-state electron transfer, it can affect the rate of electron transfer. These results have potential impacts on controlling electron transfer rates via structural alterations to the electron donor group, tuning the charge transfer driving force.

2.
J Am Chem Soc ; 146(20): 13962-13973, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38727611

ABSTRACT

Dimeric complexes composed of d8 square planar metal centers and rigid bridging ligands provide model systems to understand the interplay between attractive dispersion forces and steric strain in order to assist the development of reliable methods to model metal dimer complexes more broadly. [Ir2 (dimen)4]2+ (dimen = para-diisocyanomenthane) presents a unique case study for such phenomena, as distortions of the optimal structure of a ligand with limited conformational flexibility counteract the attractive dispersive forces from the metal and ligand to yield a complex with two ground state deformational isomers. Here, we use ultrafast X-ray solution scattering (XSS) and optical transient absorption spectroscopy (OTAS) to reveal the nature of the equilibrium distribution and the exchange rate between the deformational isomers. The two ground state isomers have spectrally distinct electronic excitations that enable the selective excitation of one isomer or the other using a femtosecond duration pulse of visible light. We then track the dynamics of the nonequilibrium depletion of the electronic ground state population─often termed the ground state hole─with ultrafast XSS and OTAS, revealing a restoration of the ground state equilibrium in 2.3 ps. This combined experimental and theoretical study provides a critical test of various density functional approximations in the description of bridged d8-d8 metal complexes. The results show that density functional theory calculations can reproduce the primary experimental observations if dispersion interactions are added, and a hybrid functional, which includes exact exchange, is used.

3.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792184

ABSTRACT

The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES). The pump-probe setup utilizes an optical laser to excite the sample, which is subsequently probed by a hard X-ray pulse to resolve structural and electronic dynamics at their intrinsic femtosecond timescales. The LJE ensures reliable sample delivery to the X-ray interaction point via various liquid jets, enabling rapid replenishment of thin samples with millimolar concentrations and low sample volumes at the 120 Hz repetition rate of the LCLS beam. This paper provides a detailed description of the LJE design and of the techniques it enables, with an emphasis on the diagnostics required for real-time monitoring of the liquid jet and on the spatiotemporal overlap methods used to optimize the signal. Additionally, various scientific examples are discussed, highlighting the versatility of the LJE.

4.
J Phys Chem B ; 128(6): 1428-1437, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38301132

ABSTRACT

Polarized time-resolved X-ray absorption spectroscopy at the Co K-edge is used to probe the excited-state dynamics and photolysis of base-off methylcobalamin and the excited-state structure of base-off adenosylcobalamin. For both molecules, the final excited-state minimum shows evidence for an expansion of the cavity around the Co ion by ca. 0.04 to 0.05 Å. The 5-coordinate base-off cob(II)alamin that is formed following photodissociation has a structure similar to that of the 5-coordinate base-on cob(II)alamin, with a ring expansion of 0.03 to 0.04 Å and a contraction of the lower axial bond length relative to that in the 6-coordinate ground state. These data provide insights into the role of the lower axial ligand in modulating the reactivity of B12 coenzymes.


Subject(s)
Coenzymes , Vitamin B 12 , X-Ray Absorption Spectroscopy , Vitamin B 12/chemistry , Photolysis
5.
Phys Rev Lett ; 131(15): 156902, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37897786

ABSTRACT

Lattice dynamics measurements are often crucial tools for understanding how materials transform between different structures. We report time-resolved x-ray scattering-based measurements of the nonequilibrium lattice dynamics in SnSe, a monochalcogenide reported to host a novel photoinduced lattice instability. By fitting interatomic force models to the fluence dependent excited-state dispersion, we determine the nonthermal origin of the lattice instability to be dominated by changes of interatomic interactions along a bilayer-connecting bond, rather than of an intralayer bonding network that is of primary importance to the lattice instability in thermal equilibrium.

6.
Sci Rep ; 13(1): 18203, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875533

ABSTRACT

X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method for studying electronic and structural properties of matter. At first glance, the relatively narrow bandwidth and the highly fluctuating spectral structure of X-ray Free Electron Lasers (XFEL) sources seem to require accumulation over many shots to achieve high data quality. To date the best approach to implementing XAS at XFEL facilities has been using monochromators to scan the photon energy across the desired spectral range. While this is possible for easily reproducible samples such as liquids, it is incompatible with many important systems. Here, we demonstrate collection of single-shot XAS spectra over 10s of eV using an XFEL source, with error bars of only a few percent. We additionally show how to extend this technique over wider spectral ranges towards Extended X-ray Absorption Fine Structure measurements, by concatenating a few tens of single-shot measurements. Our results pave the way for future XAS studies at XFELs, in particular those in the femtosecond regime. This advance is envisioned to be especially important for many transient processes that can only be initiated at lower repetition rates, for difficult to reproduce excitation conditions, or for rare samples, such as those encountered in high-energy density physics.

7.
Sci Rep ; 13(1): 17573, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845245

ABSTRACT

The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, dark field X-ray microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the [Formula: see text] photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics.

8.
Phys Rev Lett ; 131(7): 076901, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37656841

ABSTRACT

We report ultrafast x-ray scattering experiments of the quasi-1D charge density wave (CDW) material (TaSe_{4})_{2}I following ultrafast infrared photoexcitation. From the time-dependent diffraction signal at the CDW sidebands we identify a 0.11 THz amplitude mode derived primarily from a transverse acoustic mode of the high-symmetry structure. From our measurements we determine that this mode interacts with the valence charge indirectly through another collective mode, and that the CDW system in (TaSe_{4})_{2}I has a composite nature supporting multiple dynamically active structural degrees of freedom.

9.
Opt Express ; 31(19): 31410-31418, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710661

ABSTRACT

New, hard x-ray free electron lasers (FEL) produce intense femtosecond-to-attosecond pulses at angstrom wavelengths, giving access to the fundamental spatial and temporal scales of matter. These revolutionary light sources open the door to applying the suite of nonlinear, optical spectroscopy methods at hard x-ray photon energies. Nonlinear spectroscopy with hard x-rays can allow for measuring the coherence properties of short wavelength excitations with atomic specificity and for understanding how high energy excitations couple to other degrees of freedom in atomic, molecular or condensed-phase systems. As a step in this direction, here we present hard x-ray, optical four-wave mixing (4WM) measurements done at 9.8 keV at the split-and-delay line at the x-ray correlation spectroscopy (XCS) hutch of the Linac Coherent Light Source (LCLS). In this work, we create an x-ray transient grating (TG) from a pair of crossing x-ray beams and diffract optical laser pulses at 400 nm from the TG. The key technical advance here is being able to independently vary the delays of the x-ray pulses. Measurements were made in 3 different solid samples: bismuth germinate (BGO), zinc oxide (ZnO) and yttrium aluminum garnet (YAG). The resulting phase-matched, 4WM signal is measured in two different ways: by varying the x-ray, x-ray pulse delay which can reveal both material and light source coherence properties and also by varying the optical laser delay with respect to the x-ray TG to study how the x-ray excitation couples to the optical properties. Although no coherent 4WM signal was seen in these measurements, the absence of this signal gives important information on experimental requirements for detecting this in future work. Also, our laser-delay scans, although not a new measurement, were applied to different materials than in past work and reveal new examples x-ray induced lattice dynamics in solids. This work represents a key step towards extending nonlinear optics and time-resolved spectroscopy into the hard x-ray regime.

10.
J Am Chem Soc ; 145(25): 14070-14086, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37327324

ABSTRACT

Femtosecond time-resolved X-ray absorption (XANES) at the Co K-edge, X-ray emission (XES) in the Co Kß and valence-to-core regions, and broadband UV-vis transient absorption are combined to probe the femtosecond to picosecond sequential atomic and electronic dynamics following photoexcitation of two vitamin B12 compounds, hydroxocobalamin and aquocobalamin. Polarized XANES difference spectra allow identification of sequential structural evolution involving first the equatorial and then the axial ligands, with the latter showing rapid coherent bond elongation to the outer turning point of the excited state potential followed by recoil to a relaxed excited state structure. Time-resolved XES, especially in the valence-to-core region, along with polarized optical transient absorption suggests that the recoil results in the formation of a metal-centered excited state with a lifetime of 2-5 ps. This combination of methods provides a uniquely powerful tool to probe the electronic and structural dynamics of photoactive transition-metal complexes and will be applicable to a wide variety of systems.

11.
Angew Chem Int Ed Engl ; 62(28): e202304615, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37114904

ABSTRACT

Photoexcited molecular trajectories on potential energy surfaces (PESs) prior to thermalization are intimately connected to the photochemical reaction outcome. The excited-state trajectories of a diplatinum complex featuring photo-activated metal-metal σ-bond formation and associated Pt-Pt stretching motions were detected in real time using femtosecond wide-angle X-ray solution scattering. The observed motions correspond well with coherent vibrational wavepacket motions detected by femtosecond optical transient absorption. Two key coordinates for intersystem crossing have been identified, the Pt-Pt bond length and the orientation of the ligands coordinated with the platinum centers, along which the excited-state trajectories can be projected onto the calculated PESs of the excited states. This investigation has gleaned novel insight into electronic transitions occurring on the time scales of vibrational motions measured in real time, revealing ultrafast nonadiabatic or non-equilibrium processes along excited-state trajectories involving multiple excited-state PESs.

12.
J Phys Chem Lett ; 13(1): 378-386, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34985900

ABSTRACT

Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)5FeIICNRuIII(NH3)5]-, in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.6 ± 0.2, resulting from excited-state metal-to-metal charge transfer, on an ∼60 fs time scale. Our combined experimental and computational approach provides a spectroscopic ruler for quantifying excited-state valency in solvated complexes.

14.
Phys Rev Lett ; 127(5): 058001, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397240

ABSTRACT

We report observations of nanosecond nonuniform colloidal dynamics in a free flowing liquid jet using ultrafast x-ray speckle visibility spectroscopy. Utilizing a nanosecond double-bunch mode, the Linac Coherent Light Source free electron laser produced pairs of femtosecond coherent hard x-ray pulses. By exploring anisotropy in the visibility of summed speckle patterns which relates to the correlation functions, we evaluate not only the average particle flow rate in a colloidal nanoparticle jet, but also the nonuniform flow field within. The methodology presented here establishes the foundation for the study of nano- and atomic-scale inhomogeneous fluctuations in complex matter using x-ray free electron laser sources.

15.
Nature ; 592(7854): 376-380, 2021 04.
Article in English | MEDLINE | ID: mdl-33854251

ABSTRACT

The collective dynamics of topological structures1-6 are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions3,4 have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage7. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices5,6, and these are promising for ultrafast electric-field control of topological orders. However, little is known about the dynamics underlying the functionality of such complex extended nanostructures. Here, using terahertz-field excitation and femtosecond X-ray diffraction measurements, we observe ultrafast collective polarization dynamics that are unique to polar vortices, with orders-of-magnitude higher frequencies and smaller lateral size than those of experimentally realized magnetic vortices3. A previously unseen tunable mode, hereafter referred to as a vortexon, emerges in the form of transient arrays of nanoscale circular patterns of atomic displacements, which reverse their vorticity on picosecond timescales. Its frequency is considerably reduced (softened) at a critical strain, indicating a condensation (freezing) of structural dynamics. We use first-principles-based atomistic calculations and phase-field modelling to reveal the microscopic atomic arrangements and corroborate the frequencies of the vortex modes. The discovery of subterahertz collective dynamics in polar vortices opens opportunities for electric-field-driven data processing in topological structures with ultrahigh speed and density.

16.
Nat Commun ; 12(1): 1086, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597529

ABSTRACT

The dynamics of photodissociation and recombination in heme proteins represent an archetypical photochemical reaction widely used to understand the interplay between chemical dynamics and reaction environment. We report a study of the photodissociation mechanism for the Fe(II)-S bond between the heme iron and methionine sulfur of ferrous cytochrome c. This bond dissociation is an essential step in the conversion of cytochrome c from an electron transfer protein to a peroxidase enzyme. We use ultrafast X-ray solution scattering to follow the dynamics of Fe(II)-S bond dissociation and 1s3p (Kß) X-ray emission spectroscopy to follow the dynamics of the iron charge and spin multiplicity during bond dissociation. From these measurements, we conclude that the formation of a triplet metal-centered excited state with anti-bonding Fe(II)-S interactions triggers the bond dissociation and precedes the formation of the metastable Fe high-spin quintet state.


Subject(s)
Cytochromes c/metabolism , Ferrous Compounds/metabolism , Iron/metabolism , Metals/metabolism , Methionine/metabolism , Cytochromes c/chemistry , Electron Transport/radiation effects , Ferrous Compounds/chemistry , Heme/chemistry , Heme/metabolism , Iron/chemistry , Metals/chemistry , Methionine/chemistry , Molecular Dynamics Simulation , Photolysis , Spectrometry, X-Ray Emission
17.
Nat Chem ; 13(4): 343-349, 2021 04.
Article in English | MEDLINE | ID: mdl-33589787

ABSTRACT

It is well known that the solvent plays a critical role in ultrafast electron-transfer reactions. However, solvent reorganization occurs on multiple length scales, and selectively measuring short-range solute-solvent interactions at the atomic level with femtosecond time resolution remains a challenge. Here we report femtosecond X-ray scattering and emission measurements following photoinduced charge-transfer excitation in a mixed-valence bimetallic (FeiiRuiii) complex in water, and their interpretation using non-equilibrium molecular dynamics simulations. Combined experimental and computational analysis reveals that the charge-transfer excited state has a lifetime of 62 fs and that coherent translational motions of the first solvation shell are coupled to the back electron transfer. Our molecular dynamics simulations identify that the observed coherent translational motions arise from hydrogen bonding changes between the solute and nearby water molecules upon photoexcitation, and have an amplitude of tenths of ångströms, 120-200 cm-1 frequency and ~100 fs relaxation time. This study provides an atomistic view of coherent solvent reorganization mediating ultrafast intramolecular electron transfer.

18.
J Synchrotron Radiat ; 27(Pt 6): 1470-1476, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33147171

ABSTRACT

X-ray free-electron lasers (X-FELs) present new opportunities to study ultrafast lattice dynamics in complex materials. While the unprecedented source brilliance enables high fidelity measurement of structural dynamics, it also raises experimental challenges related to the understanding and control of beam-induced irreversible structural changes in samples that can ultimately impact the interpretation of experimental results. This is also important for designing reliable high performance X-ray optical components. In this work, X-FEL beam-induced lattice alterations are investigated by measuring the shot-to-shot evolution of near-Bragg coherent scattering from a single crystalline germanium sample. It is shown that X-ray photon correlation analysis of sequential speckle patterns measurements can be used to monitor the nature and extent of lattice rearrangements. Abrupt, irreversible changes are observed following intermittent high-fluence monochromatic X-ray pulses, thus revealing the existence of a threshold response to X-FEL pulse intensity.

19.
Sci Rep ; 10(1): 10780, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32612095

ABSTRACT

With the rapid development of short-pulse intense laser sources, studies of matter under extreme irradiation conditions enter further unexplored regimes. In addition, an application of X-ray Free-Electron Lasers (XFELs) delivering intense femtosecond X-ray pulses, allows to investigate sample evolution in IR pump - X-ray probe experiments with an unprecedented time resolution. Here we present a detailed study of the periodic plasma created from the colloidal crystal. Both experimental data and theory modeling show that the periodicity in the sample survives to a large extent the extreme excitation and shock wave propagation inside the colloidal crystal. This feature enables probing the excited crystal, using the powerful Bragg peak analysis, in contrast to the conventional studies of dense plasma created from bulk samples for which probing with Bragg diffraction technique is not possible. X-ray diffraction measurements of excited colloidal crystals may then lead towards a better understanding of matter phase transitions under extreme irradiation conditions.

20.
Opt Express ; 28(8): 10939-10950, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403615

ABSTRACT

X-ray free electron lasers (XFELs) provide femtosecond high-power x-ray beams with high spatial coherence, resulting in numerous influential discoveries. Diffractive optics allow for the easy manipulation and measurement of an x-ray beam's wavefront and enable the realization of complex designed properties and specifications. For example, phase gratings can be used as x-ray beam splitters to enable beam sharing by multiple end stations or in-situ beam monitoring, including spectrum and wavefront measurements. Wavefront preservation and high efficiency and survivability under high power are requirements for such beam splitters. Diamond is the most suitable choice for phase grating fabrication, due to its high thermal conductivity that enables it to survive high average power XFEL beams. We have fabricated a large area (2×2 mm2) high aspect ratio (13:1) diamond grating on a diamond plate. Testing was performed at 9.5 keV and resulted in a high splitting efficiency (30%). Tunable efficiency was obtained via tilting the grating with respect to the x-ray beam. Wavefront fidelity of the split beams were measured to less than λ/100 using a Talbot wavefront sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...