Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 5735, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029226

ABSTRACT

The COVID-19 pandemic has produced widespread behaviour changes that shifted how people split their time between different environments, altering health risks. Here, we report an update of North American activity patterns before and after pandemic onset, and implications to radioactive radon gas exposure, a leading cause of lung cancer. We surveyed 4009 Canadian households home to people of varied age, gender, employment, community, and income. Whilst overall time spent indoors remained unchanged, time in primary residence increased from 66.4 to 77% of life (+ 1062 h/y) after pandemic onset, increasing annual radiation doses from residential radon by 19.2% (0.97 mSv/y). Disproportionately greater changes were experienced by younger people in newer urban or suburban properties with more occupants, and/or those employed in managerial, administrative, or professional roles excluding medicine. Microinfluencer-based public health messaging stimulated health-seeking behaviour amongst highly impacted, younger groups by > 50%. This work supports re-evaluating environmental health risks modified by still-changing activity patterns.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , COVID-19 , Lung Neoplasms , Radon , Humans , Pandemics , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Canada/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Risk Assessment , COVID-19/epidemiology , COVID-19/complications , Radon/toxicity , Radon/analysis , Air Pollutants, Radioactive/analysis , Lung Neoplasms/epidemiology , Gases
2.
Sci Rep ; 12(1): 15471, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104382

ABSTRACT

Radioactive radon gas inhalation causes lung cancer, and public health strategies have responded by promoting testing and exposure reduction by individuals. However, a better understanding of how radon exposure disparities are driven by psychological and social variables is required. Here, we explored how behavioural factors modified residential radon-related radiation doses incurred by 2390 people who performed a radon test. The average time from first awareness to receiving a radon test outcome was 6.8-25.5 months, depending on behaviour and attitudes. 20.5% displayed radon test urgency that reduced irradiation between awareness and outcome to 1.8 mSv from a typical 3.5 mSv, while 14.8% (more likely to be men) displayed delaying behaviours that increased exposure to 8.0 mSv. Of those with low radon, 45.9% indicated no future testing intention, underscoring the importance of original tests to reliably establish risk. Among people finding high radon, 38% mitigated quickly, 29% reported economic impediments, and 33% displayed delaying behaviours. Economic barriers and delaying behaviours resulted in 8.4 mSv/year or 10.3 mSv/year long term excess exposure, respectively, increasing lifetime risk of lung cancer by ~ 30-40%. Excess radiation doses incurred from behaviour were independent of household radon level, highlighting the strong influence of psychological and socioeconomic factors on radon exposure and lung cancer risks.


Subject(s)
Lung Neoplasms , Radiation Exposure , Radon , Female , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Male , Radiation Exposure/adverse effects , Radon/analysis , Radon/toxicity , Social Factors
3.
Sci Rep ; 11(1): 11906, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099826

ABSTRACT

Radioactive radon inhalation is a leading cause of lung cancer and underlies an ongoing public health crisis. Radon exposure prevention strategies typically begin by informing populations about health effects, and their initial efficacy is measured by how well and how fast information convinces individuals to test properties. This communication process is rarely individualized, and there is little understanding if messages impact diverse demographics equally. Here, we explored how 2,390 people interested in radon testing differed in their reaction to radon's public health information and their subsequent decision to test. Only 20% were prompted to radon test after 1 encounter with awareness information, while 65% required 2-5 encounters over several months, and 15% needed 6 to > 10 encounters over many years. People who most delayed testing were more likely to be men or involved in engineering, architecture, real estate and/or physical science-related professions. Social pressures were not a major factor influencing radon testing. People who were the least worried about radon health risks were older and/or men, while negative emotional responses to awareness information were reported more by younger people, women and/or parents. This highlights the importance of developing targeted demographic messaging to create effective radon exposure prevention strategies.


Subject(s)
Environmental Exposure/adverse effects , Health Information Exchange , Information Dissemination/methods , Lung Neoplasms/diagnosis , Public Health/methods , Radon/poisoning , Adult , Aged , Aged, 80 and over , Awareness , Carcinogens, Environmental/poisoning , Environmental Exposure/prevention & control , Female , Health Knowledge, Attitudes, Practice , Humans , Lung Neoplasms/etiology , Male , Middle Aged , Surveys and Questionnaires , Young Adult
4.
Sci Rep ; 11(1): 6724, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33762674

ABSTRACT

Residential buildings can concentrate radioactive radon gas, exposing occupants to particle radiation that increases lung cancer risk. This has worsened over time in North America, with newer residences containing greater radon. Using data from 18,971 Canadian households, we calculated annual particle radiation dose rates due to long term residential radon exposure, and examined this as a function of occupant demographics. The current particle radiation dose rate to lungs from residential radon in Canada is 4.08 mSv/y from 108.2 Bq/m3, with 23.4% receiving 100-2655 mSv doses that are known to elevate human cancer risk. Notably, residences built in the twenty-first century are occupied by significantly younger people experiencing greater radiation dose rates from radon (mean age of 46 at 5.01 mSv/y), relative to older groups more likely to occupy twentieth century-built properties (mean age of 53 at 3.45-4.22 mSv/y). Newer, higher radon-containing properties are also more likely to have minors, pregnant women and an overall higher number of occupants living there full time. As younger age-of-exposure to radon equates to greater lifetime lung cancer risk, these data reveal a worst case scenario of exposure bias. This is of concern as, if it continues, it forecasts serious future increases in radon-induced lung cancer in younger people.


Subject(s)
Built Environment , Occupational Exposure/adverse effects , Radon/adverse effects , Canada/epidemiology , Environmental Exposure , Female , Humans , Male , North America/epidemiology , Public Health Surveillance , Radiation Monitoring , Radiometry , Radon/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...