Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 30(Pt 3): 655-661, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37093013

ABSTRACT

A full-field X-ray fluorescence imaging (FXI) station was recently developed at beamline BL8 of Synchrotron Light Research Institute (SLRI), Thailand. An unfocused, synchrotron X-ray beam from the bending magnet with a size of 2 mm (vertical) × 13 mm (horizontal) and photon energy of 10 keV was employed in the FXI experiments. A sample stage was tilted by 7.5° to enlarge the vertical beam size. X-ray fluorescence images were recorded by an energy-dispersive, 256 × 256 array, pn-type charge coupled device detector equipped with a polycapillary optics, providing a full-frame image size of 12.3 mm × 12.3 mm. The incident photon flux per pixel was 3 × 104 photons s-1 (100 mA)-1 and the experimental spatial resolution was 68 µm. Image processing was carried out offline using an in-house MATLAB program capable of elemental selection and inhomogeneity intensity correction. Elemental detection limits of FXI were found to decrease with increasing atomic number, i.e. 0.3 to 0.03 wt% for Z = 19 (K) to 30 (Zn). Compared with the BL6b microbeam imaging (µXI) station at SLRI with higher photon flux per pixel, 3 × 1010 photons s-1 (100 mA)-1, a tenfold sample area can be obtained and 13 times higher peak-to-background (PKB) ratio at Zn Kα measured with the same experimental time (8 h). Simultaneous measurement of FXI is more time-efficient against the long overhead times of µXI scanning over large pixel numbers, >65000. To demonstrate potential applications of the new FXI station, various types of samples were examined: dendritic limestone, ancient bronze and dried fish. Analyzed elemental images enabled us to identify areas rich in Mn on the limestone, Sn and Cu separation in the bronze, and Zn nutrition in the dried fish eye.

2.
Dalton Trans ; 51(21): 8192-8207, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35583237

ABSTRACT

Solid titanium phosphate, TiP, materials hold great promise for wastewater treatment for removal of metal ions and complexes. A series of TiP materials, synthesised at mild conditions and short reaction times, have been structurally characterised using solid-state X-ray absorption spectroscopy, phosphorus and titanium K edge XANES and EXAFS, and 31P and 47/49Ti NMR spectroscopy. The titanium K edge EXAFS data of α-Ti(HPO4)2·H2O (α-TiP) revealed octahedral coordination of oxygens around titanium. Repeated washing of primary ß-/γ-TiP with hydrochloric acid results in formation of a weakly ordered solid, TiO(OH)(H2PO4)·H2O, TiP1-H. The structure of TiP1-H is shown by Ti EXAFS to be a titanyl compound, containing a short TiO bond. The analogous data for linked titanium phosphate compounds (LTP) disclosed that inter-linkage occurs between α-TiP and titanyl phosphate units, supported by 31P-31P NOESY NMR data. 47/49Ti NMR and Ti pre-edge XANES show evidence of two different titanium environments in LTP, one very similar to that observed in TiP1-H and a second more symmetric octahedral environment. Data are discussed in terms of induced acidic hydrolyses of titanium(IV) and phosphate counterpart during washings with hydrochloric acid and water. A straightforward relation between synthesis parameters/post synthetic treatment and structural re-arrangement in the materials is established.

SELECTION OF CITATIONS
SEARCH DETAIL
...