Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rep ; 75(3): 585-595, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37060527

ABSTRACT

BACKGROUND: Short-term treatment with non-peptide agonists of delta-opioid receptors, such as agonist SNC80, induced behavioral effects in rodents, which could be modulated via changes in central neurotransmission. The present experiments aimed at testing the hypothesis that chronic treatment with SNC80 induces anxiolytic effects associated with changes in hippocampal glutamate and brainstem monoamine pathways. METHODS: Adult male Wistar rats were used in experiments. Rats were treated with SNC80 (3 mg/kg/day) for fourteen days. Neuronal excitability was assessed using extracellular in vivo single-unit electrophysiology. The behavioral parameters were examined using the elevated plus maze and open field tests. RESULTS: Chronic SNC80 treatment increased the excitability of hippocampal glutamate and ventral tegmental area dopamine neurons and had no effect on the firing activity of dorsal raphe nucleus serotonin cells. Chronic SNC80 treatment induced anxiolytic effects, which were, however, confounded by increased locomotor activity clearly confirmed in an open field test. The ability to cope with stressful situations and habituation processes in a novel environment was not influenced by chronic treatment with SNC80. CONCLUSION: Our study suggests that the psychoactive effects of SNC80 might be explained by its ability to stimulate hippocampal glutamate and mesolimbic dopamine transmission.


Subject(s)
Anti-Anxiety Agents , Glutamic Acid , Rats , Male , Animals , Anti-Anxiety Agents/pharmacology , Rats, Wistar , Habituation, Psychophysiologic , Anxiety/drug therapy , Analgesics, Opioid , Neurons , Brain Stem , Locomotion , Hippocampus , Receptors, Opioid
2.
Gen Physiol Biophys ; 39(4): 393-398, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32902408

ABSTRACT

It is known that early-life stress events induce profound consequences on emotional brain regions including amygdala, involved in emotional processing and the ventral tegmental area (VTA), which contains neuron cell bodies of the mesolimbic dopaminergic system. The aim of this study is to test the hypothesis that stress induced by long-term social isolation from weaning in female rats is associated with alterations in amygdalar dopamine receptor gene expression and VTA dopamine concentrations. Rats were weaned on postnatal day 21 and then exposed to stress of chronic isolation for 9 weeks. Control animals were housed socially. Amygdalar dopamine D1 but not D2 receptor gene expression was decreased in isolated rats compared to controls. Dopamine concentrations in the VTA were enhanced following chronic isolation. A negative correlation was observed between amygdalar D1 gene expression and dopamine concentrations in the VTA. In conclusion, a reduction of dopamine D1 receptor gene expression in the amygdala in response to stress induced by chronic isolation in female rats was accompanied by an increase in dopamine concentration in the VTA. Further studies are needed to understand the physiological significance, if any, of negative association of amygdalar dopamine receptor D1 gene expression and dopamine concentrations in the VTA.


Subject(s)
Dopamine/analysis , Receptors, Dopamine D2 , Social Isolation , Stress, Psychological , Ventral Tegmental Area , Weaning , Animals , Emotions , Female , Rats , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Ventral Tegmental Area/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...